博碩士論文 110329026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.135.190.163
姓名 楊東妮(Dong-Ni Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 低溫電子束蒸鍍金屬沉積條件對單層二硫化鉬之影響
(Effects of low-temperature e-beam evaporation metal contacts on monolayer MoS2)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 彈性基板嵌入金屬奈米粒子之光-物質耦合性質之探討★ 以反應式濺鍍前驅物應用於兩階段式成長二硫化鉬薄膜
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 過渡金屬二硫族化合物(Transition metal dichalcogenides, TMDs)已然成為下一世代微縮奈米尺度電晶體及光電元件之前瞻二維半導體材料,其中又以二硫化鉬(MoS2)被視為最具潛力之材料。決定元件性能好壞其中至關重要的便是金屬與MoS2 之接觸界面,由於使用電子束蒸鍍(electron beam evaporation)製作 MoS2 元件電極時,高能量電子束易使金屬沉積於 MoS2界面產生熱損傷,進而引起大量缺陷,使費米能階釘紮在導帶(conduction band)附近,稱為費米能階釘紮現象(Fermi-level pinning),致使元件應用受到影響。過去已有研究團隊提出使用轉印(transfer)金屬、選擇低熔點金屬當作電極等方式解決蒸鍍所造成的熱傷害。本研究為了降低傳統蒸鍍對 MoS2 所產生的熱損傷,引入了低溫電子束蒸鍍系統(low-temperature electron beam evaporation),將金及白金沉積於單層 MoS2上,探討不同低溫金屬沉積參數對單層 MoS2 之影響。透過凱爾文探針顯微鏡(Kelvin probe force microscope, KPFM)及變溫量測系統觀察到在低溫 77 K 下蒸鍍金於MoS2,其蕭特基能障由常溫之 217 meV 增至 749 meV,實現了較高之蕭特基能障。電性量測結果表明,隨著金屬沉積溫度的降低,導通電流逐漸降低且臨界電壓(threshold voltage)從 18.8 V 往正偏壓位移至 55.8 V,與拉曼光譜(Raman spectroscopy)特徵A1g峰藍移了 3.7 cm−1結果相符合,顯示費米能階釘紮現象的減輕。
摘要(英) Molybdenum disulfide (MoS2) is regarded as the most promising material for twodimensional semiconductor applications. The critical factor determining the
performance of these devices is the interface between metals and MoS2. However, conventional method of e-beam evaporation for fabricating device electrodes leads to thermal damage at the MoS2-metal interface, resulting in defects, strain and metal diffusion. As a consequence, the Fermi-level is pinned near the conduction band, a phenomenon known as Fermi-level pinning, which significantly affects the device′s
performance. Previous researches have proposed solutions to mitigate the thermal damage caused by evaporation, such as using transfer methods for metals or selecting
low melting point metals as electrodes.
In this study, we aimed to reduce the thermal damage by introducing a lowtemperature e-beam evaporation system. We deposited high melting point metals gold and platinum onto single layer MoS2 and investigated the impact of different lowtemperature metal deposition temperatures. Through Kelvin probe force microscopy(KPFM) observations, we found that depositing Au at an extremely low temperature of 77 K led to the Schottky barrier height(SBH) increased from 217 meV to 749 meV. This demonstrated a reduction in the Fermi-level pinning phenomenon. Electrical measurements showed that with decreasing metal deposition temperature, the threshold
voltage shifted from 18.8 V towards positive bias to 55.8 V. This observation was consistent with the 3.7 cm−1 blue shift in the A1g peak in the Raman spectroscopy results.
關鍵字(中) ★ 二硫化鉬
★ 電子束蒸鍍
★ 金屬接觸
★ 蕭特基能障
關鍵字(英) ★ MoS2
★ schottky barrier height
★ metal contact
★ e-beam evaporation
論文目次 摘要.................................................................................................................................i
Abstract.........................................................................................................................ii
致謝...............................................................................................................................iii
目錄...............................................................................................................................iv
圖目錄...........................................................................................................................vi
表目錄............................................................................................................................x
第一章 緒論 .................................................................................................................1
1-1 研究背景 .........................................................................................................1
1-2 研究動機 ........................................................................................................2
第二章 基礎理論及文獻回顧 .....................................................................................3
2-1 過渡金屬硫族化合物二硫化鉬(MoS2)介紹 .................................................3
2-1-1 二硫化鉬電子能帶結構......................................................................3
2-1-2 二硫化鉬之製備方法..........................................................................5
2-1-3 二硫化鉬電晶體之發展......................................................................8
2-2 二硫化鉬(MoS2)之光學性質探討 ..............................................................12
2-2-1 應變對二硫化鉬光譜之影響............................................................12
2-2-2 摻雜對二硫化鉬光譜之影響............................................................14
2-2-3 缺陷對二硫化鉬光譜之影響............................................................16
2-3 二硫化鉬(MoS2)與金屬接觸界面探討 ......................................................19
2-3-1 二硫化鉬-金屬接觸界面之微觀結構...............................................19
2-3-2 二硫化鉬-金屬接觸之費米能階釘紮現象及蕭特基能障分析.......23
第三章 研究方法與步驟 ...........................................................................................33
3-1 實驗流程 .................................................................................................33
3-2 實驗材料與設備 .....................................................................................34
3-3 實驗步驟 .................................................................................................35
第四章 研究結果與討論 ...........................................................................................36
4-1 金屬沉積溫度對二硫化鉬性質之影響 ......................................................36
4-1-1 金屬沉積前後之二硫化鉬光譜分析................................................36
4-1-2 金屬沉積於二硫化鉬之表面形貌....................................................39
4-2 二硫化鉬與金屬接觸界面之探討 ..............................................................42
4-2-1 退火對二硫化鉬電晶體之影響........................................................42
v
4-2-2 不同溫度下二硫化鉬與金屬接觸之蕭特基能障............................45
4-2-3 不同金屬沉積溫度對二硫化鉬電晶體之電性探討........................53
4-2-4 照光對二硫化鉬電晶體之影響........................................................59
第五章 結論 ...............................................................................................................63
參考文獻......................................................................................................................64
參考文獻 1. Xiaochuan Duan., et al., Small Methods, 1(11), 1700156, (2017).
2. Toh, R. J., et al., Chemical Communications, 53(21), 3054-3057, (2017).
3. Hernandez Ruiz K., et al., Small Science, 2(1), 2100047, (2022).
4. Kuc, A., et al., Physical Review B, 83(24), (2011).
5. Novoselov, K. S., et al., Science, 306(5696), 666-669, (2004).
6. Mouloua, D., et al., A Review. Materials, 14(12), 3283, (2021).
7. Li, H., et al., Small, 8(1), 63-67, (2011).
8. Yang, P., et al., Nature Communications, 9(1), (2018).
9. Yu, H., et al., ACS Nano, 11(12), 12001-12007, (2017).
10. Suenaga, K., et al., ACS Nano, 12(10), 10032-10044, (2018).
11. Withanage, S. S., et al., ACS Omega, 3(12), 18943-18949, (2018).
12. Tan, L. K., et al., Nanoscale, 6(18), 10584-10588, (2014).
13. Li, W., Zhang, et al., Sensors, 19(9), 2123, (2019).
14. Tong, X., et al., Nano-Micro Letters, 7(3), 203-218, (2015).
15. Mondal, A., et al., Nature Nanotechnology, (2023).
16. Liu, Y., et al., Nanoscale Advances, 3(8), 2117-2138, (2021).
17. Radisavljevic, B., et al., Nature Nanotechnology, 6(3), 147-150, (2011).
18. Lemme, M. C., et al., MRS Bulletin, 39(08), 711-718, (2014).
19. Chuang, S., et al., Nano Letters, 14(3), 1337-1342, (2014).
20. Li, N., Wang, et al., Nature Electronics, 3(11), 711-717, (2020).
21. Shen, P.-C., et al., Nature, 593(7858), 211–217, (2021).
22. Wang, Y., Kim, et al., Nature, 568(7750), 70-74, (2019).
23. Kiriya, D., et al., Journal of the American Chemical Society, 136(22), 7853-
7856, (2014).
65
24. Kim, B. K., et al., Npj 2D Materials and Applications, 5(1), (2021).
25. Wang, Y., et al., Nature, 610(7930), 61-66, 2022).
26. Zhang, P., et al., Journal of Semiconductors, 41(7), 071901, (2020).
27. Liu, X., et al., Advanced Materials, 34(15), 2108425, (2022).
28. Liu, W., et al., IEEE International Electron Devices Meeting, (2013).
29. Damien Voiry., et al., Chem. Soc. Rev., 44, 2702-2712, (2015).
30. Bampoulis, P., et al., ACS Applied Materials & Interfaces, 9(22), 19278-19286,
(2017).
31. Wang, Q., et al., Journal of Materials Chemistry C, 8, 3113-3119, (2020).
32. Kim, C., et al., ACS Nano, 11(2), 1588-1596, (2017).
33. Parto, K., et al., Physical Review Applied, 15(6), 064068, (2021).
34. Wang, L., et al., Science, 342(6158), 614-617, (2013).
35. Allain, A., et al., Nature Materials, 14(12), 1195-1205, (2015).
36. Kang, J., et al., Physical Review X, 4(3), (2014).
37. Zhong, H., et al., Scientific Reports, 6(1), (2016).
38. Mitta, S. B., et al., 2D Materials, 8(1), 012002, (2021).
39. Andrews, K., et al., ACS Nano, 14(5), 6232-6241, (2020).
40. Liu, Y., et al., Nature, 557(7707), 696-700, (2018).
41. Kim, G. S., et al., ACS Nano, 12(6), 6292-6300, (2018).
42. Yang, Z., et al., Advanced Materials, 31(25), 1808231, (2019).
43. Chou, A. S., et al., IEEE Electron Device Letters, 42(2), 272-275, (2021).
44. Molina-Sánchez, A., et al., Surface Science Reports, 70(4), 554-586, (2015).
45. Zheng, J., et al., Advanced Materials, 29(13), 1604540, (2017).
46. Li, Z., et al., Nature Communications, 11(1), (2020).
47. Hui, Y. Y., et al., ACS Nano, 7(8), 7126-7131, (2013).
66
48. Chakraborty, B., et al., Physical Review B, 85(16), (2012).
49. Mouri, S., et al., Nano Letters, 13(12), 5944-5948, (2013).
50. Li, M., et al., ACS Applied Materials and Interfaces, 12(5), 6276-6282, (2020).
51. Iqbal, M. W., et al., Microelectronic Engineering, 111152, (2019).
52. Mignuzzi, S., et al., Physical Review B, 91(19), (2015).
53. Frey, G. L., et al., Physical Review B, 60(4), 2883-2892, (1999).
54. Ahn, J.H., et al., Scientific Reports, 7(1), 4075, (2017).
55. Zhou, H., et al., Nanoscale, 7(20), 9153-9157, (2015).
56. Chang, M.C., et al., Nature Communications, 11(1), 3682, (2020).
57. Kim, S., et al., Nature Communications, 3(1), 1011, (2012).
58. Cho, K., et al., ACS Nano, 7(9), 7751-7758, (2013).
59. Radisavljevic, B., Nature Materials, 12(9), 815-820, (2013).
指導教授 陳一塵(I-Chen Chen) 審核日期 2024-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明