博碩士論文 110353013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.117.121.71
姓名 黃和銘(He-Ming Huang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 以電解混氣法輔助微電化學高深徑比鑽孔加工之研究
(Research on high aspect ratio micro holes by electrochemical drilling combine with electrolytic gas-mixing method)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
★ 6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析★ 深切緩進電化學放電加工於石英玻璃之創成特性研究
★ 機械手臂輔助電解複合研磨系統應用於積層製造鈦合金葉片拋光★ 高深徑比微細孔電化學加工 多重物理量耦合模擬之研究
★ 混氣電解電漿拋光法於不銹鋼管內表面品質改善之研究★ 靜電感應電化學加工法於哈氏合金內管壁拋光特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-20以後開放)
摘要(中) 電化學鑽孔加工(Electrochemical Drilling, ECD)不受材料硬度、韌性限制,能在極堅硬、韌性極強之零件上加工出高精度微孔,故此技術已廣泛用於大量生產具微孔之相關零件。ECD施作過程中,由於加工間隙狹窄,電解產物難以順利帶離加工區,造成電解液流動阻礙,流體流速降低,最終可能導致表面缺陷。若將氣體與電解液充分混合,並泵入工件陽極和工具陰極之間的間隙,使流場呈氣液兩相,便可調節加工間隙的平衡,達到改變流場特性之目的。
故本研究以微電化學鑽孔加工(Micro Electrochemical Drilling, μECD)結合電解產氣技術,於SUS304不鏽鋼進行高深徑比鑽孔加工,加工陰極使用附絕緣層之銅管電極,其外徑約為320 μm,工件厚度選用5 mm及150 mm兩種尺寸進行研究。在電化學鑽孔過程中,一律以直流定電流源模式進行加工,確保可得到較佳之孔壁垂直度。其中,欲探討之研究參數包括電解液電導度、加工電流、進給速度、混氣電流等參數對孔之品質特性之影響。
在研究流程方面,首先透過加工工件厚度為5 mm之通孔取得最佳參數,接著,在電解液中混入氣泡,並以混氣裝置控制混氣電流,嘗試取得更佳之擴孔量及入出口差。結果發現,隨著混氣電流增加,微孔之擴孔量皆有縮小趨勢,然而隨著電極進給速度與混氣電流同時增加至一定程度後,會產生反效果,甚至導致無法鑽通5 mm之淺孔。
為了得知混氣電解液在高深徑比之深孔有無影響,故調整進給速度,並更換工件尺寸,改為長度150 mm之SUS304不鏽鋼棒材。最終,以進給速度0.36 mm/min,未混氣且以定電流源模式加工之極限深度為91.7 mm,深徑比為189.85;而使用混氣電解液後,以定電流源模式加工之極限深度為124.9 mm,深徑比為248.31,改善比例為30.7%。
摘要(英) Electrochemical drilling (ECD) is not constrained by material hardness or toughness, allowing it to machine high-precision micro-holes in extremely hard and tough components. As a result, this technology has been widely adopted for the mass production of parts featuring micro-holes. During the ECD process, the narrow machining gap can hinder the removal of electrolysis by-products from the machining area, obstructing electrolyte flow and reducing fluid velocity. This may ultimately result in surface defects. By fully mixing gas with the electrolyte and pumping the mixture into the gap between the anode workpiece and the cathode tool, the flow field can be adjusted to a gas-liquid two-phase state, thereby balancing the machining gap and altering flow characteristics.
In this study, micro-electrochemical drilling (μECD) combined with electrolysis gas generation technology was used to drill high aspect ratio holes in SUS304 stainless steel. The cathode tool was a copper tube electrode with an insulating layer, having an outer diameter of approximately 320 μm. Two workpiece sizes, 5 mm and 150 mm in thickness, were selected for the study. The electrochemical drilling process was performed using a direct current constant-current source mode to ensure better verticality of the hole walls. The research parameters investigated included electrolyte conductivity, machining current, feed rate, and gas-mixing current, and their effects on the quality characteristics of the drilled holes were examined.
In terms of the research procedure, optimal parameters were first determined by machining through-holes in workpieces with a thickness of 5 mm. Next, bubbles were introduced into the electrolyte, and the gas-mixing current was controlled using a gas-mixing device to achieve improved overcut and entrance-exit differences. The results showed that as the gas-mixing current increased, the overcut of the micro-holes tended to decrease. However, when both the electrode feed rate and gas-mixing current were increased beyond a certain point, adverse effects occurred, even resulting in failure to penetrate 5 mm shallow holes.
To investigate the impact of gas-mixed electrolytes on high aspect ratio deep holes, the feed rate was adjusted, and the workpiece size was changed to a 150 mm long SUS304 stainless steel rod. Ultimately, at a feed rate of 0.36 mm/min, the maximum depth achieved using a non-gas-mixed electrolyte in constant-current source mode was 91.7 mm, with an aspect ratio of 189.85. In contrast, with the use of a gas-mixed electrolyte under constant-current source mode, the maximum depth reached was 124.9 mm, with an aspect ratio of 248.31, representing an improvement ratio of 30.7%.
關鍵字(中) ★ 微細深孔
★ 微電化學加工
★ 高深徑比
★ 氣液兩相流
★ 定電流源
關鍵字(英) ★ Micro deep hole
★ Electrochemical micro-machining
★ High aspect ratio
★ Gas-liquid two-phase flow
★ Constant current source
論文目次 目錄
摘要 I
Abstract III
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1 前言: 1
1-2 研究動機及目的 2
1-3 文獻回顧 3
1-3-1 電化學深孔加工之相關文獻 3
1-3-2 混氣電化學加工之相關文獻 9
1-3-3 電化學加工實務結合模擬驗證之相關文獻 12
1-4 論文架構 15
第二章 基礎理論 16
2-1 電化學加工 16
2-1-1 電化學鑽孔加工原理 16
2-1-2 法拉第電解定律 18
2-1-3 歐姆定律 19
2-2 電解產氣技術 19
2-2-1 電解產氣基本原理 20
2-2-2 電解產氣流程 21
2-3 混氣電化學加工 21
2-3-1 混氣電化學加工原理 21
2-3-2 混氣電化學加工機制 22
第三章 實驗設備與步驟方法 25
3-1 基礎實驗相關設備 25
3-1-1 數值控制細孔電化學加工機 25
3-1-2 電解液循環系統 26
3-1-3 直流電源供應器 29
3-1-4 電解式混合氣體模組 29
3-1-5 超音波清洗裝置 30
3-1-6 數值控制線切割放電加工機 31
3-1-7 數位示波器 32
3-1-8 高頻電流探棒 33
3-1-9 電導度分析儀 34
3-1-10 液體流量感測器 36
3-2 檢測儀器 37
3-2-1 雷射共軛焦暨白光干涉儀 37
3-2-2 低真空掃描式電子顯微鏡 38
3-2-3 半自動影像測定儀 38
3-3 實驗材料 40
3-3-1 工件材料 40
3-3-2 電解液之選用 41
3-3-3 刀具電極之簡介 42
3-4 實驗方法與流程 44
3-4-1 實驗方法 44
3-4-2 實驗流程 46
第四章 結果與討論 50
4-1 電解液混入電解氣泡後之觀察 50
4-1-1 混氣對加工電壓之影響 50
4-1-2 電解液流量之量測及觀察 55
4-2 電化學淺孔加工參數之影響分析 58
4-2-1 電解液電導度對平均擴孔量及入出口差之影響 59
4-2-2 加工電流匹配電極進給速度對擴孔量及入出口差之影響 64
4-2-3 混氣電流對擴孔量及入出口差之影響 74
4-3 電化學深孔加工參數之影響分析 83
4-3-1 電極進給率對高深徑比微細孔深度之影響 83
4-3-2 混氣電解液對高深徑比之微細孔極限深度之影響及各深度之擴孔量觀察 86
4-3-3 高深徑比微細孔極限深度之重現性測試 94
4-4 混氣電解液對高深徑比之微細孔側壁表面形貌觀察 96
4-5 電極壽命觀察結果 98
第五章 結論 101
未來展望 103
參考文獻 104
參考文獻 [1]M.S. Hewidy, S.J. Ebeid, K.P. Rajurkarc, M.F. El-Saftia, “Electrochemical machining under orbital motion conditions”, Journal of Materials Processing Technology, Vol. 109, pp. 339–346, 2001.
[2]D. S. Bilgi, V. K. Jain, R. Shekhar, S. Mehrotra, “Electrochemical deep hole drilling in super alloy for turbine application”, Journal of Materials Processing Technology, Vol. 149, pp. 445–452, 2003.
[3]洪智育,“微電化學深孔加工之研究與分析”,國立中央大學碩士論文, 2006。
[4]Z. Li, S. Di, “Study of pulse electrochemical machining performance of deep small hole on nickel-based alloy”, Advanced Materials Research, Vol. 204–210, pp. 1830–1834, 2011.
[5]林鈴洲,“附絕緣層之電極管應用於電化學鑽孔加工之研究”,逢甲大學碩士論文,2017。
[6]楊正賢,“電極端錐度變化於電化學鑽孔加工特性之研究”,逢甲大學碩士論文,2018。
[7]吳宗叡,“變脈寬定電流控制器於電化學鑽孔加工之研究”,逢甲大學碩士論文,2018。
[8]Y. Zhang, N. Qu, X. Fang, X. Wang, “Eliminating spikes by optimizing machining parameters in electrochemical drilling”, Journal of Manufacturing Processes, Vol. 37, pp. 488–495, 2019.
[9]W. Wang, D. Zhu, N.S. Qu, S.F. Huang, X.L. Fang, “Electrochemical drilling with vacuum extraction of electrolyte”, Journal of Materials Processing Technology, Vol. 210, pp. 238–244, 2010.
[10]Y. Zeng, X. Fang, Y. Zhang, and N. Qu, “Electrochemical Drilling of Deep Small Holes in Titanium Alloys with Pulsating Electrolyte Flow”, Advances in Mechanical Engineering, Vol. 2014, pp.357–364, 2014.
[11]X. Wang, N. Qu, X. Fang, H. Li, “Electrochemical drilling with constant electrolyte flow”, Journal of Materials Processing Technology, Vol. 238, pp. 1–7, 2016.
[12]X. Fang, X. Wang, W. Wang, N. Qu, H. Li, “Electrochemical drilling of multiple small holes with optimized electrolyte dividing manifolds”, Journal of Materials Processing Tech., Vol. 247, pp. 40–47, 2017.
[13]J. Luo, X. Fang, T. Yang, D. Zhu, “Electrochemical drilling of small holes by regulating in real-time the electrolyte flowrate in multiple channels”, Chinese Journal of Aeronautics, Vol. 35, pp. 470–483, 2021.
[14]G. Wang, H. Li, N. Qu, D. Zhu, “Improvement of electrolyte flow field during through-mask electrochemical machining by changing mask wall angle”, Journal of Manufacturing Processes, Vol. 25, pp. 246–252, 2017.
[15]D. Zhu, T. Xue, X. Hu, Z. Gu “Electrochemical trepanning with uniform electrolyte flow around the entire blade profile”, Chinese Journal of Aeronautics, Vol. 32, pp. 1748–1755, 2019.
[16]M. Chai, Z. Li, H. Yan, X. Sun, “Experimental investigations on aircraft blade cooling holes and CFD fluid analysis in electrochemical machining”, Hindawi Advances in Materials Science and Engineering, Vol. 2019, pp. 1–11, 2019.
[17]H. Zou, X. Yue, H. Luo, B. Liu, S. Zhang, “Electrochemical micromachining of micro hole using micro drill with non-conductive mask on the machined surface”, Journal of Manufacturing Processes, Vol. 59, pp. 366–377, 2020.
[18]L. Cheng, X. Chen, Z. Ye, Y. Zhang, “Advancing electrochemical drilling process via coupling of flow field and electric field in pulsating state generated by a novel tube tool”, Chinese Journal of Aeronautics, Vol. 37, pp. 542–555, 2024.
[19]S. Ghahremanian, K. Svensson, M. J. Tummers, B. Moshfegh, “Near-field mixing of jets issuing from an array of round nozzles”, International Journal of Heat and Fluid Flow, Vol. 47, pp. 84–100, 2014.
[20]劉正弘,“混氣電化學微噴射加工之研究”,逢甲大學碩士論文,2015。
[21]Z. Li, X. Wei, W. Lu, Q. Cui, “Comparative Analysis of Flow Field in Mixed and Non-Mixed Gas Electrochemical Machining for Aero-Engine Turbine Blade Cooling Holes”, Applied Mechanics and Materials, Vol. 868, pp. 166–171, 2017.
[22]P.J. Yang, J.C. Hung, “On high resolution bubbly flow generator for gas-mixed micro electrochemical machining”, Journal of Manufacturing Processes, Vol. 121, pp. 269–288, 2024.
[23]黃銘志,“電化學鑽孔加工之模擬”,中央大學碩士論文,2007。
[24]G. C. Naidu, K. D. Reddy, P. V. Ramaiah, “Experimental evaluation of electrolyte flow pattern in ECM tool using CFD analysis”, International Journal of Advanced Engineering Research and Science (IJAERS), Vol. 3, pp. 138–143, 2016.
[25]陳泓悅,“熱流場對靜態刀具遮罩式微電化學加工的影響性”,中央大學碩士論文,2017。
[26]G. Liu, Y. Li, Q. Kong, L. Yu “Impact analysis of electrolyte pressure on shape accuracy of micro holes in ECM with hollow electrodes”, Procedia CIRP, Vol.68 ,pp.420–425, 2018.
[27]M.H. Wang, W.J. Tong, G.Z. Qiu, X.F. Xu, A. Speidel, J. Mitchell-Smith “Multiphysics study in air-shielding electrochemical micromachining”, Journal of Manufacturing Processes, Vol. 43, pp.124–135, 2019.
[28]Z. Li, B. Cao, Y. Dai, “Research on Multi-Physics Coupling Simulation for the Pulse Electrochemical Machining of Holes with Tube Electrodes”, Micromachines, Vol. 950, pp.1–18, 2021.
[29]W. Chen, Z. Ge, Y. Zhu, Y. Hou, “Simulation and experimental study on influence of flow field parameters on electrochemical machining performance”, International Journal of Electrochemical Science, Vol.17, pp. 1–16, 2022.
[30]吳永富,“電化學工程應用”,五南出版公司,p253–254, 2019。
[31]許家瑞,“電化學加工之參數探討與流場模擬”,成功大學碩士論文,2017。
[32]王建業,“電解加工原理及應用”,國防工業出版社,pp. 50.、pp. 92。
[33]J. G. Reynolds, B. M. Mauss, R. C. Daniel, “The relative viscosity of NaNO3 and NaNO2 aqueous solutions”, Journal of Molecular Liquids, Vol. 264, pp. 110–114, 2018.
[34]M. Z. Rahman, A. K. Das, S. Chattopadhyaya, “Machinability study of stainless steel in deep micro-holes fabrication through μECM using balance electrode”, Materials Today: Proceedings, Vol. 43, pp. 1437–1442, 2021
[35]朱樹敏,“電化學加工技術”,化學工業出版社,pp. 45–46。
指導教授 洪榮洲 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明