參考文獻 |
[1]M.S. Hewidy, S.J. Ebeid, K.P. Rajurkarc, M.F. El-Saftia, “Electrochemical machining under orbital motion conditions”, Journal of Materials Processing Technology, Vol. 109, pp. 339–346, 2001.
[2]D. S. Bilgi, V. K. Jain, R. Shekhar, S. Mehrotra, “Electrochemical deep hole drilling in super alloy for turbine application”, Journal of Materials Processing Technology, Vol. 149, pp. 445–452, 2003.
[3]洪智育,“微電化學深孔加工之研究與分析”,國立中央大學碩士論文, 2006。
[4]Z. Li, S. Di, “Study of pulse electrochemical machining performance of deep small hole on nickel-based alloy”, Advanced Materials Research, Vol. 204–210, pp. 1830–1834, 2011.
[5]林鈴洲,“附絕緣層之電極管應用於電化學鑽孔加工之研究”,逢甲大學碩士論文,2017。
[6]楊正賢,“電極端錐度變化於電化學鑽孔加工特性之研究”,逢甲大學碩士論文,2018。
[7]吳宗叡,“變脈寬定電流控制器於電化學鑽孔加工之研究”,逢甲大學碩士論文,2018。
[8]Y. Zhang, N. Qu, X. Fang, X. Wang, “Eliminating spikes by optimizing machining parameters in electrochemical drilling”, Journal of Manufacturing Processes, Vol. 37, pp. 488–495, 2019.
[9]W. Wang, D. Zhu, N.S. Qu, S.F. Huang, X.L. Fang, “Electrochemical drilling with vacuum extraction of electrolyte”, Journal of Materials Processing Technology, Vol. 210, pp. 238–244, 2010.
[10]Y. Zeng, X. Fang, Y. Zhang, and N. Qu, “Electrochemical Drilling of Deep Small Holes in Titanium Alloys with Pulsating Electrolyte Flow”, Advances in Mechanical Engineering, Vol. 2014, pp.357–364, 2014.
[11]X. Wang, N. Qu, X. Fang, H. Li, “Electrochemical drilling with constant electrolyte flow”, Journal of Materials Processing Technology, Vol. 238, pp. 1–7, 2016.
[12]X. Fang, X. Wang, W. Wang, N. Qu, H. Li, “Electrochemical drilling of multiple small holes with optimized electrolyte dividing manifolds”, Journal of Materials Processing Tech., Vol. 247, pp. 40–47, 2017.
[13]J. Luo, X. Fang, T. Yang, D. Zhu, “Electrochemical drilling of small holes by regulating in real-time the electrolyte flowrate in multiple channels”, Chinese Journal of Aeronautics, Vol. 35, pp. 470–483, 2021.
[14]G. Wang, H. Li, N. Qu, D. Zhu, “Improvement of electrolyte flow field during through-mask electrochemical machining by changing mask wall angle”, Journal of Manufacturing Processes, Vol. 25, pp. 246–252, 2017.
[15]D. Zhu, T. Xue, X. Hu, Z. Gu “Electrochemical trepanning with uniform electrolyte flow around the entire blade profile”, Chinese Journal of Aeronautics, Vol. 32, pp. 1748–1755, 2019.
[16]M. Chai, Z. Li, H. Yan, X. Sun, “Experimental investigations on aircraft blade cooling holes and CFD fluid analysis in electrochemical machining”, Hindawi Advances in Materials Science and Engineering, Vol. 2019, pp. 1–11, 2019.
[17]H. Zou, X. Yue, H. Luo, B. Liu, S. Zhang, “Electrochemical micromachining of micro hole using micro drill with non-conductive mask on the machined surface”, Journal of Manufacturing Processes, Vol. 59, pp. 366–377, 2020.
[18]L. Cheng, X. Chen, Z. Ye, Y. Zhang, “Advancing electrochemical drilling process via coupling of flow field and electric field in pulsating state generated by a novel tube tool”, Chinese Journal of Aeronautics, Vol. 37, pp. 542–555, 2024.
[19]S. Ghahremanian, K. Svensson, M. J. Tummers, B. Moshfegh, “Near-field mixing of jets issuing from an array of round nozzles”, International Journal of Heat and Fluid Flow, Vol. 47, pp. 84–100, 2014.
[20]劉正弘,“混氣電化學微噴射加工之研究”,逢甲大學碩士論文,2015。
[21]Z. Li, X. Wei, W. Lu, Q. Cui, “Comparative Analysis of Flow Field in Mixed and Non-Mixed Gas Electrochemical Machining for Aero-Engine Turbine Blade Cooling Holes”, Applied Mechanics and Materials, Vol. 868, pp. 166–171, 2017.
[22]P.J. Yang, J.C. Hung, “On high resolution bubbly flow generator for gas-mixed micro electrochemical machining”, Journal of Manufacturing Processes, Vol. 121, pp. 269–288, 2024.
[23]黃銘志,“電化學鑽孔加工之模擬”,中央大學碩士論文,2007。
[24]G. C. Naidu, K. D. Reddy, P. V. Ramaiah, “Experimental evaluation of electrolyte flow pattern in ECM tool using CFD analysis”, International Journal of Advanced Engineering Research and Science (IJAERS), Vol. 3, pp. 138–143, 2016.
[25]陳泓悅,“熱流場對靜態刀具遮罩式微電化學加工的影響性”,中央大學碩士論文,2017。
[26]G. Liu, Y. Li, Q. Kong, L. Yu “Impact analysis of electrolyte pressure on shape accuracy of micro holes in ECM with hollow electrodes”, Procedia CIRP, Vol.68 ,pp.420–425, 2018.
[27]M.H. Wang, W.J. Tong, G.Z. Qiu, X.F. Xu, A. Speidel, J. Mitchell-Smith “Multiphysics study in air-shielding electrochemical micromachining”, Journal of Manufacturing Processes, Vol. 43, pp.124–135, 2019.
[28]Z. Li, B. Cao, Y. Dai, “Research on Multi-Physics Coupling Simulation for the Pulse Electrochemical Machining of Holes with Tube Electrodes”, Micromachines, Vol. 950, pp.1–18, 2021.
[29]W. Chen, Z. Ge, Y. Zhu, Y. Hou, “Simulation and experimental study on influence of flow field parameters on electrochemical machining performance”, International Journal of Electrochemical Science, Vol.17, pp. 1–16, 2022.
[30]吳永富,“電化學工程應用”,五南出版公司,p253–254, 2019。
[31]許家瑞,“電化學加工之參數探討與流場模擬”,成功大學碩士論文,2017。
[32]王建業,“電解加工原理及應用”,國防工業出版社,pp. 50.、pp. 92。
[33]J. G. Reynolds, B. M. Mauss, R. C. Daniel, “The relative viscosity of NaNO3 and NaNO2 aqueous solutions”, Journal of Molecular Liquids, Vol. 264, pp. 110–114, 2018.
[34]M. Z. Rahman, A. K. Das, S. Chattopadhyaya, “Machinability study of stainless steel in deep micro-holes fabrication through μECM using balance electrode”, Materials Today: Proceedings, Vol. 43, pp. 1437–1442, 2021
[35]朱樹敏,“電化學加工技術”,化學工業出版社,pp. 45–46。 |