博碩士論文 110382607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.14.144.145
姓名 薛家晨(Jia-Chen Xue)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 3D列印纖維永續混凝土材料之開發及減碳效益評估
(Development of 3D Printed Fiber Sustainable Concrete Materials and Evaluation of Carbon Reduction Benefits)
相關論文
★ 台61線快速道路養護經費與平坦度分析-以2007-2019為例★ 應用於高放處置設施之低鹼性混凝土性質及其對緩衝材料影響之研析
★ 溫度對預拌型超早強混凝土性質之影響及相應策略★ 紙漿污泥焚化爐飛灰資源化應用作為CLSM細粒料之可行性研究
★ 燃煤飛灰與底灰應用於陶瓷建材之初步研究★ 細粒料含電弧爐碴之檢測方法及對混凝土性質影響研究
★ 以加速環境探討含電弧爐碴砂漿之膨脹行為 及工程性質影響★ 砂膠比與纖維種類對3D列印混凝土的工程性質影響研究
★ 硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究★ 營建剩餘土石方收容處理場所評鑑制度之研究-以桃園市為例
★ 溫度對複合添加凝結型及硬化型加速劑的預拌高早強水泥漿體及砂漿之工程性質影響研究★ 永續材料及纖維應用於3D列印混凝土之工程性質探討
★ 硫鋁酸鈣水泥複合膠結材料之工程性質及抗硫酸鹽能力研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-3-17以後開放)
摘要(中) 為實現2050年淨零碳排放目標,土木領域需逐步減少碳排放。混凝土3D列印作為高智能化之「綠色工法」,可降低施工過程中之溫室氣體排放。但為滿足材料流變性能要求,目前可列印混凝土在配比設計方面與淨零排放理念相悖。
本研究旨在開發適用於3D列印之「3D列印纖維永續混凝土(3DFPC)」,並進行全面的生命週期評估。通過3D列印測試,探討不同永續材料對3D列印混凝土之性能影響,提出適用於3DFPC之推薦配比,並根據生命週期評估結果提供應用建議。
研究首先通過對9種永續材料(包括天然礦物、工業及農業副產物)及不同化學摻料對3D列印混凝土基體在新拌及硬固階段之性能測試,可發現矽灰(SF)、燃煤飛灰(FA)和水淬爐石粉(BFS)在高比例取代水泥(PC)時具有較高之應用潛力。同時發現,高性能減水劑D (SPD)搭配複合型黏度改質劑(CVMA)作為最佳之化學摻料組合方案,以維持材料在新拌階段之特性。
在進一步對混凝土進行測試時,根據測試結果可發現,在新拌階段,保型率相較於流度值更能有效對混凝土材料之可列印性進行初步評估,建議保型率至少達到87 % 以上以確保材料可具備較高之可列印潛力。在硬固階段,在粒料參數之影響中,機製砂(MS)之性能由於粒形優勢可略優於石英砂(QS),而砂膠比增加可有效改善材料之乾燥收縮,但提升至1.5對3D列印混凝土之抗壓及抗彎強度均造成明顯之負面影響。膠結材料方面,SF在二元系統中可憑藉粒徑及水化活性優勢而實現較高之強度發展,但過高取代量將導致乾燥收縮明顯提升。而FA及BFS則在高取代量時導致強度削弱,但此現象在三元系統中可得到改善。綜合考慮,採用MS並選擇砂膠比1.25為適用於3D列印混凝土的最佳顆粒設計方案,而膠結材料以二元或三元系統取代50 % 之PC體積可兼顧材料之力學性能與永續性。
同時,本研究導入纖維增強技術,測試不同纖維類型(如聚甲醛纖維(POMF)、聚丙烯纖維(PPF)、碳纖維(CF)、玄武岩纖維(BF)及硫酸鈣晶鬚(CSW))之適用性,分析纖維長度及用量對材料可列印性及硬固階段性質之影響。結果可發現,除BF在新拌階段存在堵塞噴頭橫向而不適用於3D列印工藝外,POMF與PPF隨添加量增加可明顯提升混凝土韌性,但會導致強度降低;CF及CSW隨添加量增加可提升強度,但對韌性則沒有貢獻。通過多種纖維之性能對比與協同優化,確定以0.5 % 之PPF使材料在韌性方面有所提升,並同時搭配1.0 % 之CSW,實現高強度與韌性之結合。
綜上述所,在3DFPC配比設計中,建議採用MS以砂膠比1.25進行粒料設計,而在膠結材料則採用三元系統,以SF搭配FA以取代50 % 之PC體積,並以上述之複合纖維設計方案進行纖維增強,以此同時兼顧工程性質及減碳效益。本研究所提出之3DFPC建議配比之抗壓及抗彎強度分別可高達88.9及13.6 MPa,韌性在3D列印之Y軸方向最高可達6,174 J,在強度表現方面可具備明顯優勢,其抗壓及抗彎強度相較於其他研究中所使用之混凝土材料而言可達約50.4 % 及38.1 % 之平均強度提升。同時發現,3D列印工藝所導致之強度損失主要源於結構體內大孔隙之數量增加,此外,列印設備之局限性及列印層尺寸變化等因素皆可能削弱其力學性質。而此工藝所造成之力學各向異性則主要受不同方向上之層間界面數量及形式差異影響,在抗壓強度方面,荷載方向平行於列印方向時之強度可高於垂直方向,但在抗彎強度方面則情況相反。此外,纖維之特殊排列將加劇抗彎強度之各向異性特性。至於壓彎比,荷載平行於列印方向之表現在3DPC中高於垂直方向,而在3DFPC中則沒有明顯差異。
在環境效益方面,研究通過碳排放量化分析與生命週期評估,全面探討3DFPC在原材料使用及結構建造過程中之環境影響。基於碳係數法之計算結果表明,與傳統3D列印混凝土配比相比,所提出之3DFPC建議配比設計可在原材料層面平均減少約40 % 之碳排放。同時,在建造相同功能構件時,以此材料搭配3D列印工藝使用可較傳統灌漿減少約6.6 % 之碳排放。此外,生命週期評估結果顯示,在系統邊界設定為「從搖籃到現場」之前提下,在3D列印工藝中採用本研究之建議3DFPC配比設計分別可在建案材料生產、運輸及施工階段較傳統灌漿工藝實現約22 %、41 % 及11 % 之碳排放減量,整體可達之減排效益約為26 %,且若基於此材料之性能而進行結構優化設計可具有進一步減少碳排之潛力。
綜上所述,本研究提出之3DFPC可同時兼顧力學性能與環境效益,為3D列印技術在土木工程領域之推廣提供理論支持,為實現2050年淨零碳排目標提供有效方案。
摘要(英) To achieve the 2050 net-zero carbon emission target, the civil engineering sector must gradually reduce its carbon emissions. As a highly intelligent "green construction method," 3D-printed concrete can reduce greenhouse gas emissions during the construction process. However, to meet rheological performance requirements, current printable concrete mix designs often conflict with net-zero emission principles.
This study aims to develop "fiber-reinforced 3D-printed sustainable concrete (3DFPC)" tailored for 3D printing and to conduct a comprehensive life cycle assessment (LCA). Through 3D printing tests, the effects of various sustainable materials on the performance of 3D-printed concrete are explored, a recommended mix design for 3DFPC is proposed, and application recommendations are provided based on the LCA results.
The study first evaluates the fresh and hardened properties of 3D-printed concrete matrices using nine sustainable materials (including natural minerals, industrial by-products, and agricultural residues) and various chemical admixtures. It is found that silica fume (SF), fly ash (FA), and ground granulated blast furnace slag (BFS) exhibit significant potential when used to replace a high proportion of Portland cement (PC). Additionally, superplasticizer D (SPD) combined with a composite viscosity-modifying admixture (CVMA) is identified as the optimal chemical admixture combination for maintaining fresh properties.
Further testing reveals that during the fresh state, shape retention is more effective than flowability in assessing the printability of concrete materials. A minimum shape retention of 87% is recommended to ensure high printability potential. In the hardening stage, among the influences of aggregate parameters, the performance of manufactured sand (MS) can be slightly better than quartz sand (QS) due to its particle shape advantage. An increase in the sand-to-binder ratio can effectively improve the drying shrinkage of the material, but raising it to 1.5 has a significant negative impact on both the compressive and flexural strength of 3D-printed concrete. Among binders, SF achieves higher strength development in binary systems due to its particle size and pozzolanic activity but leads to significant drying shrinkage at high replacement levels. FA and BFS result in strength reduction at high replacement levels, which is mitigated in ternary systems. Overall, using MS with an A/B ratio of 1.25 and replacing 50% of PC volume with a binary or ternary binder system balances mechanical performance and sustainability.
The study also introduces fiber reinforcement techniques to test the applicability of various fibers (e.g., polyoxymethylene fibers (POMF), polypropylene fibers (PPF), carbon fibers (CF), basalt fibers (BF), and calcium sulfate whiskers (CSW)). The impact of fiber length and dosage on printability and hardened properties is analyzed. Results indicate that BF causes nozzle blockage in the fresh state and is unsuitable for 3D printing. POMF and PPF enhance toughness with increased dosage but reduce strength. Conversely, CF and CSW improve strength but do not enhance toughness. Through optimization, a combination of 0.5% PPF for toughness improvement and 1.0% CSW for strength enhancement is identified, achieving a balance of high strength and toughness.
Based on these findings, the recommended mix design for 3DFPC includes MS with an A/B ratio of 1.25 for aggregate design, a ternary binder system with SF and FA replacing 50% of PC volume, and the aforementioned composite fiber reinforcement strategy. This design achieves compressive and flexural strengths of up to 88.9 MPa and 13.6 MPa, respectively, with a toughness modulus in the Y-axis direction of 6,174 J for 3D printing. Compared to other 3D-printed concrete materials, the compressive and flexural strengths show average improvements of approximately 50.4% and 38.1%, respectively. Strength loss in 3D-printed structures is attributed primarily to increased macroporosity, as well as limitations of printing equipment and layer size variations. The anisotropy of mechanical properties is influenced by the number and type of interlayer interfaces, with compressive strength higher in the loading direction parallel to the printing direction, while flexural strength is higher in the perpendicular direction. The unique fiber alignment exacerbates flexural strength anisotropy. Regarding the compression-to-bending ratio, 3DPC shows higher performance in the parallel loading direction, whereas no significant difference is observed in 3DFPC.
From an environmental perspective, the study employs carbon emission quantification and LCA to examine the environmental impact of 3DFPC in raw material usage and construction processes. Results calculated using the carbon coefficient method indicate that the proposed 3DFPC mix design reduces raw material carbon emissions by approximately 40% compared to conventional 3D-printed concrete. For constructing equivalent functional components, this material combined with 3D printing reduces carbon emissions by approximately 6.6% compared to traditional casting methods. LCA results show that adopting the proposed 3DFPC mix design in 3D printing achieves carbon emission reductions of approximately 22%, 41%, and 11% during material production, transportation, and construction stages, respectively, compared to traditional casting methods. The overall reduction in emissions is about 26%, with further potential for optimization through structural design.
In conclusion, the proposed 3DFPC integrates mechanical performance and environmental benefits, providing theoretical support for promoting 3D printing technology in civil engineering and offering an effective solution for achieving the 2050 net-zero carbon emission target.
關鍵字(中) ★ 3D列印工藝
★ 化學摻料
★ 纖維
★ 纖維永續混凝土
★ 減碳效益評估
關鍵字(英) ★ 3D printing technology
★ Chemical admixtures
★ fibers
★ fiber-reinforced sustainable concrete
★ 3D printing technology, Chemical admixtures, Fibers, Fiber-reinforced sustainable concrete, Carbon reduction benefit assessment
論文目次 目錄
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 XIII
表目錄 XXV
縮寫說明表 XXX
第1章 緒論 1
1.1研究背景 1
1.2研究?容及目的 2
第2章 文獻回顧 4
2.1 混凝土3D列印工藝 4
2.1.1 3D列印混凝土之發展歷程 4
2.1.2 3D列印混凝土之列印設備 8
2.2 3D列印混凝土材料之可列印性 (Printability) 要求 11
2.2.1 3D列印混凝土之可泵性 (Pumpability) 12
2.2.2 3D列印混凝土之可擠出性 (Extrudability) 16
2.2.3 3D列印混凝土之可建造性 (Buildability) 21
2.3 3D列印混凝土材料之流變行為 29
2.3.1 觸變性之形成 31
2.3.2 流變行為之評估方式 36
2.3.3 流變行為與可列印性之關係 61
2.4 3D列印混凝土之層間特性 65
2.4.1 層間界面之產生及影響因素 66
2.4.2 層間界面之測試方法 73
2.4.3 層間結合性能之補強方式 76
2.5 3D列印混凝土之各向異性 79
2.6 3D列印混凝土之耐久性 80
2.6.1 有害離子侵入 80
2.6.2 體積穩定性 82
2.7纖維增?混凝土 (Fiber-reinforced concrete, FRC) 83
2.7.1纖維之種類及特性 84
2.7.2纖維用於混凝土之增強機理 88
2.8混凝土之永續性研究 93
2.8.1混凝土中之永續材料 94
2.8.2 3D列印永續混凝土 100
第3章 試驗規劃 105
3.1研究流程 105
3.1.1第一階段(流程A) 105
3.1.2第二階段(流程B) 106
3.1.3第三階段(流程C) 107
3.1.4第四階段(流程D) 108
3.1.4第五階段(流程E) 109
3.2試驗材料 116
3.2.1 膠結材料 116
3.2.2 化學摻料 124
3.2.3 細粒料 127
3.2.4 纖維材料 128
3.3試驗設備 132
3.3.1 3D列印設備 132
3.3.2 拌和機 132
3.3.3 流度台 133
3.3.4 黏度計 133
3.3.5抗彎強度試驗機 134
3.3.6抗壓強度試驗機 134
3.3.6數位式比長儀 135
3.3.7烘箱 135
3.3.8掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 135
3.3.9 數位顯微鏡 (Digital Microscope, DM) 136
3.3.10 X射線電腦斷層掃描 (X-Ray Computed Tomography, X-CT) 136
3.3.11位移感測器 (Linear Variable Differential Transformer, LVDT) 137
3.3.12數據擷取器 137
3.3.13萬能試驗機 137
3.3.14混凝土試體切割機 137
3.4試體編號及配比設計 138
3.4.1第一階段(流程A) 138
3.4.2第二階段(流程B) 141
3.4.3第三階段(流程C) 147
3.4.4第四階段(流程D) 151
3.5拌和程序及試驗方法 152
3.5.1拌和程序 152
3.5.2坍流度測試 152
3.5.3流度測試 153
3.5.4保型率測試 153
3.5.5流變行為測試 154
3.5.6凝結時間測試 157
3.5.7可列印性測試 157
3.5.8抗壓及抗彎強度試驗 167
3.5.9各向異性評估 169
3.5.10韌性試驗 170
3.5.11乾燥收縮測試 171
3.5.12掃描式電子顯微鏡測試分析 (Scanning Electron Microscopy, SEM) 171
3.5.13數位顯微鏡觀測試驗 172
3.5.14 X射線電腦斷層掃描 172
第4章 材料參數對3D列印永續混凝土基體流變特性及硬固性質之影響 173
4.1 3D列印永續混凝土基體中天然礦物及工(農)業副產物之適用性評估 173
4.1.1永續材料類型對基體SP用量之影響 175
4.1.2永續材料類型對基體新拌性質之影響 176
4.1.3基體新拌性質與靜置時間之關係 184
4.1.4永續材料類型對基體抗壓強度之影響 205
4.1.5 3D列印永續混凝土基體之SEM分析 208
4.2不同化學摻料型號、類型、用量及搭配對3D列印永續混凝土基體之影響 215
4.2.1聚羧酸高性能減水劑(SP)對3D列印永續混凝土基體流動性之影響 215
4.2.2黏度改質劑(VMA)作用於3D列印永續混凝土基體之性能評估 219
4.3綜合討論與分析 236
4.3.1膠結材料中之永續材料對3D列印永續混凝土基體之影響及機理分析 236
4.3.2化學摻料在3D列印永續混凝土基體中之作用與影響分析 246
4.3.3不同類型材料於3D列印混凝土中之應用潛力評估 253
4.4本章小結 256
第5章 材料參數對3D列印永續混凝土工程性質之影響探討 258
5.1 材料參數對3D列印永續混凝土新拌特性之影響 258
5.1.1砂膠比對3DPC新拌特性之影響 258
5.1.2粒料類型對3DPC新拌特性之影響 271
5.1.3永續膠結材料參數對3DPC新拌特性之影響 274
5.2 材料參數對3DPC硬固性質之影響 286
5.2.1砂膠比對3DPC硬固特性之影響 287
5.2.2粒料類型對3DPC硬固特性之影響 299
5.2.3永續膠結材料參數對3DPC硬固特性之影響 303
5.3 綜合討論與分析 327
5.3.1不同材料參數下3DPC可列印性與工作性之關係分析 327
5.3.2不同材料參數對3DPC力學行為之影響及機理分析 336
5.3.3不同材料參數對3DPC乾燥收縮之影響及機理分析 347
5.3.4 3DPC之設計方案提出 350
5.4本章小結 353
第6章 纖維參數對3D列印纖維永續混凝土工程性質之影響探討 355
6.1不同纖維類型下之3DFPC強度表現測試結果 358
6.1.1纖維種類對3DFPC抗壓強度之影響 360
6.1.2纖維種類對3DFPC抗彎強度之影響 371
6.2不同纖維用量下之3DFPC強度表現測試結果 382
6.2.1纖維用量對3DFPC抗壓強度之影響 385
6.2.2纖維用量對3DFPC抗彎強度之影響 403
6.3不同纖維尺寸下之3DFPC強度表現測試結果 420
6.3.1纖維尺寸對3DFPC抗壓強度之影響 421
6.3.2纖維尺寸對3DFPC抗彎強度之影響 428
6.4不同纖維參數下之3DFPC韌性測試結果 435
6.4.1傳統灌漿工藝下之3DFPC之韌性測試結果 435
6.4.2 3D列印工藝下之3DFPC之韌性測試結果 439
6.5 不同纖維參數下之3DFPC乾燥收縮測試結果 445
6.6 3DFPC複合纖維設計方案之工程性質測試 455
6.6.1抗壓強度測試結果 456
6.6.2抗彎強度測試結果 458
6.6.3韌性測試結果 459
6.7 綜合討論與分析 461
6.7.1纖維參數對3DFPC之抗壓及抗彎強度影響分析 461
6.7.2纖維參數對3DFPC之韌性影響分析 467
6.7.3纖維參數對3DFPC之各向異性影響分析 473
6.7.4纖維參數對3DFPC乾燥收縮之影響分析 480
6.7.5 3DFPC之複合纖維設計方案提出及選擇 482
6.8本章小結 486
第7章 3D列印纖維永續混凝土之工程性質探討及施工工藝之影響 488
7.1 3DPC之工程性質評估 488
7.1.1 3DPC之抗壓強度測試結果 488
7.1.2 3DPC之抗彎強度測試結果 499
7.1.3 3DPC之SEM分析 510
7.2 3DFPC之工程性質評估 516
7.2.1 3DFPC之抗壓強度測試結果 517
7.2.2 3DFPC之抗彎強度測試結果 519
7.2.3 3DFPC之韌性測試結果 520
7.3列印層尺寸對3DFPC工程性質之影響 522
7.3.1 不同列印層尺寸下之抗壓強度測試結果 524
7.3.2 不同列印層尺寸下之抗彎強度測試結果 526
7.4綜合討論與分析 528
7.4.1 3DPC之特性分析及配比設計方案提出 528
7.4.2 3DFPC之特性分析及配比設計方案提出 530
7.4.3 3D列印工藝造成之3DPC/3DFPC力學性能變化分析 532
7.4.4 不同類型纖維之3DFPC強度預測 538
7.4.5 3D列印工藝造成之3DPC/3DFPC力學性能各向異性分析 542
7.4.6 3D列印工藝下之3DPC/3DFPC抗壓與抗彎強度之關係分析 553
7.4.7 混凝土空心柱狀結構之3D列印驗證 557
7.5本章小結 558
第8章 3D列印纖維永續混凝土之優劣勢分析及生命週期評估 560
8.1本研究之建議3DFPC設計總結 560
8.2 3DFPC建議配比設計之優劣勢分析 562
8.2.1 3DFPC力學性能方面之優勢分析 562
8.2.2 3DFPC原材料層面之二氧化碳排放量化分析 565
8.2.3 3DFPC結構物之二氧化碳排放量化分析 570
8.3 3DFPC之生命週期評估案例分析 575
8.3.1目標與範圍定義 576
8.3.2生命週期清單分析及生命週期影響評估 580
8.3.3結果解讀與改進建議 585
8.4本章小結 588
第9章 結論與建議 589
9.1結論 589
9.2建議 591
參考文獻 593
表附錄 646
圖附錄 677
參考文獻 1. 國家發展委員會:Retrieved January 12, 2022, from https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811&upn=5CE3D7B70507FB38 .
2. Perrot, A., Rangeard, D. and Pierre, A. (2015). Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures, 49(4), 1213-1220.
3. Zhang, J., Wang, J., Dong, S., Yu, X. and Han, B. (2019). A review of the current progress and application of 3D printed concrete. Composites Part A: Applied Science and Manufacturing, 105533.
4. Weng, Y., Li, M., Ruan, S., Wong, T. N., Tan, M. J., Ow Yeong, K. L. and Qian, S. (2020). Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, 121245.
5. ASTM F42. (2015). Standard Terminology for Additive Manufacturing Technologies, American Society for Testing and Materials. Pennsylvania, United States.
6. Sanjayan, J. G., Nematollahi, B., Xia, M. and Marchment, T. (2018). Effect of surface moisture on inter-layer strength of 3D printed concrete. Construction and Building Materials, 172, 468-475.
7. Cui, J., Ren, L., Mai, J., Zheng, P. and Zhang, L. (2022). 3D Printing in the Context of Cloud Manufacturing. Robotics and Computer-Integrated Manufacturing, 74, 102256.
8. Khoshnevis, B., Carlson, A., Leach, N. and Thangavelu, M. (2012). Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Buildup. Earth and Space 2012, 1458-1467.
9. Pegna, J. (1997). Exploratory investigation of solid freeform construction. Automation in Construction, 5(5), 427-437.
10. Khorramshahi, M.R. and Mokhtari, A. (2017). Automatic Construction by Contour Crafting Technology. Materials Science, 1(1), 28-33.
11. Contour Crafting Corporation: Retrieved February 30, 2022, from https://www.contourcrafting.com .
12. Khoshnevis, B., Hwang, D., Yao, K. T. and Yeh, Z. (2006). Mega-scale fabrication by Contour Crafting. International Journal of Industrial and Systems Engineering, 1(3), 301-320.
13. Khoshnevis, B., Bodiford, M., Burks, K., Ethridge, E., Tucker, D., Kim, W., … Fiske, M. (2005). Lunar Contour Crafting - A Novel Technique for ISRU-Based Habitat Development. 43rd AIAA Aerospace Sciences Meeting and Exhibit.
14. Khoshnevis, B. (2004). Automated construction by contour crafting-related robotics and information technologies. Automation in Construction, 13(1), 5-19.
15. Akhnoukh, A.K. (2020). Advantages of Contour Crafting in Construction Applications. Recent Patents on Engineering 14(3), 294-300.
16. D-Shape: Retrieved February 30, 2022, from http://www.d-shape.com.
17. Cesaretti, G., Dini, E., De Kestelier, X., Colla, V. and Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430-450.
18. Lowke, D., Dini, E., Perrot, A., Weger, D., Gehlen, C. and Dillenburger, B. (2018). Particle-bed 3D printing in concrete construction – Possibilities and challenges. Cement and Concrete Research, 112, 50-65.
19. Colla. V. and Dini, E. Large scale 3D printing: from Deep Sea to the Moon, in low-cost 3D printing for science, education and sustainable development, in: E. Canessa, C. Fonda, M. Zennaro (Eds.), ICTP-The Abdus Salam Centre for Theoretical Physics, ICTP Science Dissemination Unit, 2013, pp. 127-132.
20. Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F. and Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21, 262-268.
21. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F. and Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and Structures, 45(8), 1221-1232.
22. Buswell, R. A., Leal de Silva, W. R., Jones, S. Z. and Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37-49.
23. Perkins, I. and Skitmore, M. (2015). Three-dimensional printing in the construction industry: A review. International Journal of Construction Management, 15(1), 1-9.
24. Hager, I., Golonka, A. and Putanowicz, R. (2016). 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Engineering, 151, 292-299.
25. Salet, T. A. M., Ahmed, Z. Y., Bos, F. P. and Laagland, H. L. M. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222–236.
26. 田澤皓,(2020),「3D列印混凝土層間界面的力學和耐久性能研究」,碩士論文,河北工業大學。
27. Paul, S. C., van Zijl, G. P. A. ., Tan, M. J. and Gibson, I. (2018). A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal.
28. 張雲升,張宇,陳逸東,(2021),「綜論3D列印混凝土:成型系統·可列印性能·流變性能·硬化性能·耐久性能·標準規範·工程應用」,中國建材科技,第30卷,第3期,第8-17頁。
29. Roussel, N. (2018). Rheological requirements for printable concretes. Cement and Concrete Research, 112, 76-85.
30. Hou, S., Duan, Z., Xiao, J. and Ye, J. (2020). A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Construction and Building Materials, 121745.
31. Yu, K., McGee, W., Ng, T. Y., Zhu, H. and Li, V. C. (2021). 3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties. Cement and Concrete Research, 143, 106388.
32. Ji, G., Ding, T., Xiao, J., Du, S., Li, J. and Duan, Z. (2019). A 3D Printed Ready-Mixed Concrete Power Distribution Substation: Materials and Construction Technology. Materials, 12(9), 1540.
33. Ogura, H., Nerella, V. and Mechtcherine, V. (2018). Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing. Materials, 11(8), 1375.
34. Siamardi, K. (2022). Optimization of fresh and hardened properties of structural light weight self-compacting concrete mix design using response surface methodology. Construction and Building Materials, 317, 125928.
35. Nguyen Amanjean, E., Mouret, M. and Vidal, T. (2019). Effect of design parameters on the properties of ultra-high performance fibre-reinforced concrete in the fresh state. Construction and Building Materials, 224, 1007-1017.
36. Rong, X., Liu, H. and Li, C. (2022). A proposed method and monitoring system for evaluating workability of Portland cement concrete during mixing. Heliyon, 8(11), e11355.
37. Zhang, B. (1998). Relationship Between Pore Structure and Mechanical Properties of Ordinary Concrete Under Bending Fatigue. Cement and Concrete Research, 28(5), 699-711.
38. Daniel Tay, Y. W., Qian, Y. and Tan, M. J. (2019). Printability region for 3D concrete printing using slump and slump flow test. Composites Part B: Engineering, 174, 106968.
39. Mohan, M. K., Rahul, A. V., Van Tittelboom, K., and De Schutter, G. (2021). Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cement and Concrete Composites, 103855.
40. Mechtcherine, V., Bos, F. P., Perrot, A., da Silva, W. R. L., Nerella, V. N., Fataei, S., … Roussel, N. (2020). Extrusion-based additive manufacturing with cement-based materials - Production steps, processes, and their underlying physics: A review. Cement and Concrete Research, 132, 106037.
41. Reiter, L., Wangler, T., Roussel, N. and Flatt, R. J. (2018). The role of early age structural build-up in digital fabrication with concrete. Cement and Concrete Research, 112, 86-95.
42. Wangler, T., Roussel, N., Bos, F. P., Salet, T. A. M. and Flatt, R. J. (2019). Digital Concrete: A Review. Cement and Concrete Research, 123, 105780.
43. Shin, T.Y., Kim, Y.H., Park, C.B. and Kim, J.H. (2022). Quantitative evaluation on the pumpability of lightweight aggregate concrete by a full-scale pumping test. Case Studies in Construction Materials, 16, e01075.
44. Choi, M. S., Kim, Y. J., Jang, K. P. and Kwon, S. H. (2014). Effect of the coarse aggregate size on pipe flow of pumped concrete. Construction and Building Materials, 66, 723-730.
45. Feys, D., Khayat, K. H. and Khatib, R. (2016). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement and Concrete Composites, 66, 38-46.
46. Mechtcherine, V., Nerella, V. N. and Kasten, K. (2014). Testing pumpability of concrete using Sliding Pipe Rheometer. Construction and Building Materials, 53, 312-323.
47. Jacobsen, S., Haugan, L., Hammer, T. A. and Kalogiannidis, E. (2009). Flow conditions of fresh mortar and concrete in different pipes. Cement and Concrete Research, 39(11), 997-1006.
48. Raval, A.D. and Patel, C.G. (2022). Estimation of interface friction and concrete boundary layer for 3D printable concrete pumping. Materials Today: Proceedings, 57(2), 664-669.
49. Choi, M., Roussel, N., Kim, Y. and Kim, J. (2013). Lubrication layer properties during concrete pumping. Cement and Concrete Research, 45, 69-78.
50. Browne, R.D. and Bamforth, P.B. (1977). Tests to establish concrete pumpability. ACI Journal Proceedings, 74(5), 193-203.
51. Kaplan, D., De Larrard, F. and Sedran, T. (2005). Design of concrete pumping circuit. ACI Materials Journal, 102(2), 110-117.
52. Jang, K. P. and Choi, M. S. (2019). How affect the pipe length of pumping circuit on concrete pumping. Construction and Building Materials, 208, 758-766.
53. Xie, X., Zhang. L., Shi, C. and Liu, X. (2022). Prediction of lubrication layer properties of pumped concrete based on flow induced particle migration. Construction and Building Materials, 322, 126115.
54. Ngo, T.T., Kadri, E.H., Bennacer, R. and Cussigh, F. (2010). Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping. Construction and Building Materials, 24(7), 1253-1261.
55. Feys, D., Khayat, K. H., Perez-Schell, A. and Khatib, R. (2014). Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cement and Concrete Composites, 54, 40-52.
56. Feys, D., Khayat, K. H., Perez-Schell, A. and Khatib, R. (2015). Prediction of pumping pressure by means of new tribometer for highly-workable concrete. Cement and Concrete Composites, 57, 102-115.
57. Kim, J. S., Kwon, S. H., Jang, K. P. and Choi, M. S. (2018). Concrete pumping prediction considering different measurement of the rheological properties. Construction and Building Materials, 171, 493-503.
58. Kazemian, A., Yuan, X., Cochran, E. and Khoshnevis, B. (2017). Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials, 145, 639-647.
59. Ma, G., Li, Z. and Wang, L. (2018). Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Construction and Building Materials, 162, 613-627.
60. Rahul, A. V., Santhanam, M., Meena, H. and Ghani, Z. (2019). 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites, 97, 13-23.
61. Tay, Y.W.D., Li, M.Y. and Tan, M.J. (2019). Effect of printing parameters in 3D concrete printing: Printing region and support structures. Journal of Materials Processing Technology, 271, 261-270.
62. Nerella, V. N., Nather, M., Iqbal, A., Butler, M. and Mechtcherine, V. (2018). Inline quantification of extrudability of cementitious materials for digital construction. Cement and Concrete Composites, 95, 260-270.
63. Zhi, P., Wu, Y.C., Yang, Q.F., Kong, X. and Xiao, J. (2022). Effect of spiral blade geometry on 3D-printed concrete rheological properties and extrudability using discrete element modeling. Automation in Construction, 137, 104199.
64. Ahmed, S. and Yehia, S. (2022). Evaluation of workability and structuration rate of locally developed 3D printing concrete using conventional methods. Materials, 15(3), 1243.
65. Khelifi, H., Perrot, A., Lecompte, T., Rangeard, D. and Ausias, G. (2013). Prediction of extrusion load and liquid phase filtration during ram extrusion of high solid volume fraction pastes. Powder Technology, 249, 258-268.
66. Xu, J., Wang, W., and Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162.
67. Mohan, M.K., Rahul, A.V., Van Tittelboom, K., De Schutter, G. (2020). Evaluating the Influence of Aggregate Content on Pumpability of 3D Printable Concrete. In: Bos, F., Lucas, S., Wolfs, R., Salet, T. (eds) Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Bookseries, vol 28. Springer, Cham.
68. Hu, J. and Wang, K. (2011). Effect of coarse aggregate characteristics on concrete rheology. Construction and Building Materials, 25(3), 1196-1204.
69. Kruger, J., Zeranka, S. and van Zijl, G. (2020). A rheology-based quasi-static shape retention model for digitally fabricated concrete. Construction and Building Materials, 254, 119241.
70. Mortada, Y., Mohammad, M., Mansoor, B., Grasley, Z. and Masad, E. (2022). Development of test methods to evaluate the printability of concrete materials for additive manufacturing. Materials, 15(18), 6486.
71. Wolfs, R. J. M., Bos, F. P. and Salet, T. A. M. (2019). Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cement and Concrete Composites, 104, 103344.
72. Suiker, A. S. J. (2018). Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. International Journal of Mechanical Sciences, 137, 145-170.
73. Ivanova, I., Ivaniuk, E., Bisetti, S., Nerella, V. N. and Mechtcherine, V. (2022). Comparison between methods for indirect assessment of buildability in fresh 3D printed mortar and concrete. Cement and Concrete Research, 156, 106764.
74. Moeini, A.M., Hosseinpoor, M. and Yahia, A. (2022). 3D printing of cement-based materials with adapted buildability. Construction and Building Materials, 337, 127614.
75. Wolfs, R. J. M., Bos, F. P. and Salet, T. A. M. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research, 106, 103-116.
76. Panda, B., Lim, J. H. and Tan, M. J. (2019). Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Composites Part B: Engineering, 165, 563-571.
77. Kaushik, S. Sonebi, M. Amatoa, G. Perrot, A. Dasc. U.K. (2022). Influence of nanoclay on the fresh and rheological behaviour of 3D printing mortar. Materialstoday: Proceedings, 58(4), 1063-1068.
78. Pasupathy, K., Ramakrishnan, S. and Sanjayan, J. (2022). Enhancing the properties of foam concrete 3D printing using porous aggregates. Cement and Concrete Composites, 133, 104687.
79. Melichar, J., ?i?kova, N., Bro?ovsky, J., Meszarosova, L. and Hermann, R. (2022). Study of the Interaction of Cement-Based Materials for 3D Printing with Fly Ash and Superabsorbent Polymers. Buildings, 12(11), 2008.
80. Spurina, E., Sinka, M., Ziemelis, K., Vanags, A. and Bajare, D. (2022). The effects of air-entraining agent on fresh and hardened properties of 3D concrete. Journal of Composites Science, 6(10), 281.
81. Liu, C., Wang, X., Chen, Y., Zhang, C., Ma, L., Deng, Z., … Banthia, N. (2021). Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cement and Concrete Composites, 122, 104158.
82. Liu, C., Chen, Y., Xiong, Y., Jia, L., Ma, L., Wang, X., Chen, C., Banthia, N. and Zhang., Y. (2022). Influence of HPMC and SF on buildability of 3D printing foam concrete: From water state and flocculation point of view. Composites Part B, 242, 110075.
83. Pham, L., Tran, P. and Sanjayan, J. (2020). Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Construction and Building Materials, 250, 118785.
84. Cui, H., Li, Y., Cao, X., Huang, M., Tang, W. and Li, Z. (2022). Experimental study of 3d concrete printing configurations based on the buildability evaluation. Applied Sciences, 12, 2939.
85. Cui, H, Yu, S, Cao, X. and Yang, H. (2022). Evaluation of printability and thermal properties of 3D printed concrete mixed with phase change materials. Energies, 15(6), 1978.
86. Tregger, N. A., Pakula, M. E. and Shah, S. P. (2010). Influence of clays on the rheology of cement pastes. Cement and Concrete Research, 40(3), 384-391.
87. Zhang, Y., Zhang, Y., Liu, G., Yang, Y., Wu, M. and Pang, B. (2018). Fresh properties of a novel 3D printing concrete ink. Construction and Building Materials, 174, 263-271.
88. Yuan, Q., Li, Z., Zhou, D., Huang, T., Huang, H., Jiao, D. and Shi, C. (2019). A feasible method for measuring the buildability of fresh 3D printing mortar. Construction and Building Materials, 227, 116600.
89. Dvorkin, L., Marchuk, V., Hager, I. and Maroszek, M. Design of cement-slag concrete composition for 3D printing. Energies 2022, 15, 4610.
90. Kazemian, A., Yuan, X., Meier, R. and Khoshnevis, B. (2019). Performance-Based Testing of Portland Cement Concrete for Construction-Scale 3D Printing. 3D Concrete Printing Technology, 13-35.
91. Banfill, P.F.G. (2003). The rheology of fresh cement and concrete-a review. Proceedings of the 11th international cement chemistry congress, 1, 50-62.
92. Nazar, S., Yang, J., Thomas, B. S., Azim, I. and Ur Rehman, S. K. (2020). Rheological properties of cementitious composites with and without nano-materials: A comprehensive review. Journal of Cleaner Production, 272, 122701.
93. Zhang, C., Hou, Z., Chen, C., Zhang, Y., Mechtcherine, V. and Sun, Z. (2019). Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content. Cement and Concrete Composites, 104, 103406.
94. Papachristoforou, M., Mitsopoulos, V. and Stefanidou, M. (2018). Evaluation of workability parameters in 3D printing concrete. Procedia Structural Integrity, 10, 155-162.
95. Kristombu Baduge, S., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., … Aye, L. (2021). Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures, 29, 1597-1609.
96. Slavcheva, G.S. and Artamonova, O.V. (2018). Rheological behavior of 3D printable cement paste: Criterial evaluation. Magazine of Civil Engineering, 84(8), 97-108.
97. Jeong, H., Han, S.J., Choi, S.H., Lee, Y.J., Yi, S.T. and Kim, K.S. (2019). Rheological property criteria for buildable 3D printing concrete. Materials, 12(4), 657.
98. Lee, K.W., Lee, H.J. and Choi, M.S. (2022). Correlation between thixotropic behavior and buildability for 3D concrete printing. Construction and Building Materials, 347, 128498.
99. Feys, D., Cepuritis, R., Jacobsen, S., Lesage, K., Secrieru, E. and Yahia, A. (2018). Measuring rheological properties of cement pastes: most common techniques, procedures and challenges. RILEM technical letters, 2, 129-135.
100. Zhang, Y., Zhang, Y., She, W., Yang, L., Liu, G. and Yang, Y. (2019). Rheological and harden properties of the high-thixotropy 3D printing concrete. Construction and Building Materials, 201, 278-285.
101. Yahia, A. and Khayat, K. (2001). Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cement and Concrete Research, 31(5), 731-738.
102. Moeini, M. A., Hosseinpoor, M. and Yahia, A. (2020). Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Construction and Building Materials, 257, 119551.
103. Sun, C., Xiang, J., Xu, M., He, Y., Tong, Z. and Cui, X. (2020). 3D extrusion free forming of geopolymer composites: Materials modification and processing optimization. Journal of Cleaner Production, 120986.
104. Qian, Y. and Kawashima, S. (2016). Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cement and Concrete Research, 90, 73-79.
105. Qian, Y. and Kawashima, S. (2018). Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cement and Concrete Composites, 86, 288-296.
106. Roussel, N., Ovarlez, G., Garrault, S. and Brumaud, C. (2012). The origins of thixotropy of fresh cement pastes. Cement and Concrete Research, 42(1), 148-157.
107. Kruger, J., Zeranka, S. and van Zijl, G. (2019). An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Construction and Building Materials, 224, 372-386.
108. Zhang, C., Deng, D., Chen, C., Zhang, Y., Mechtcherine, V. and Sun, Z. (2022). Predicting the static yield stress of 3D printable concrete based on flowability of paste and thickness of excess paste layer. Cement and Concrete Composites, 129, 104494.
109. Chen, M., Liu, B., Li, L., Cao, L., Huang, Y., Wang, S., … Cheng, X. (2020). Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite. Composites Part B: Engineering, 107821.
110. Zhang, C., Nerella, V. N., Krishna, A., Wang, S., Zhang, Y., Mechtcherine, V., and Banthia, N. (2021). Mix design concepts for 3D printable concrete: A review. Cement and Concrete Composites, 122, 104155.
111. Panda, B., Singh, G. B., Unluer, C. and Tan, M. J. (2019). Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. Journal of Cleaner Production, 220, 610-619.
112. Panda, B., Ruan, S., Unluer, C. and Tan, M. J. (2020). Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Composites Part B: Engineering, 186, 107826.
113. Chen, M., Yang, L., Zheng, Y., Huang, Y., Li, L., Zhao, P., … Cheng, X. (2020). Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Construction and Building Materials, 252, 119090.
114. Olhero, S. and Ferreira, J. M. (2004). Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technology, 139(1), 69-75.
115. Patural, L., Marchal, P., Govin, A., Grosseau, P., Ruot, B. and Deves, O. (2011). Cellulose ethers influence on water retention and consistency in cement-based mortars. Cement and Concrete Research, 41(1), 46-55.
116. Zhi, Z., Ma, B., Tan, H., Guo, Y., Jin, Z., Yu, H. and Jian, S. (2018). Effect of Competitive Adsorption between Polycarboxylate Superplasticizer and Hydroxypropylmethyl Cellulose on Rheology of Gypsum Paste. Journal of Materials in Civil Engineering, 30(7), 04018141.
117. Lin, Y., Yan, J., Wang, Z., Fan, F. and Zou, C. (2019). Effect of silica fumes on fluidity of UHPC: Experiments, influence mechanism and evaluation methods. Construction and Building Materials, 210, 451-460.
118. Koehler, E.P. and Fowler, D.W. (2003). Summary of Concrete Workability Test Methods. The University of Texas at Austin, Research Report ICAR-105-1, Austin, TX, USA.
119. Hackley, V. and Ferraris, C. (2001). Guide to Rheological Nomenclature: Measurement in Ceramic Particulate Systems. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD.
120. Nerella, V. N., Beigh, M. A. B., Fataei, S. and Mechtcherine, V. (2018). Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction. Cement and Concrete Research, 115, 530-544.
121. Ma, L., Zhang, Q., Jia, Z., Liu, C., Deng, Z. and Zhang, Y. (2022). Effect of drying environment on mechanical properties, internal RH and pore structure of 3D printed concrete. Construction and Building Materials, 315, 125731.
122. Long, W.J., Tao, J.L., Lin, C., Gu, Y., Mei, L., Duan, H.B. and Xing, F. (2019). Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. Journal of Cleaner Production, 239, 118054.
123. Ouyang, J., Tan, Y., Corr, D. J. and Shah, S. P. (2016). The thixotropic behavior of fresh cement asphalt emulsion paste. Construction and Building Materials, 114, 906-912.
124. Qian, Y., Lesage, K., El Cheikh, K. and De Schutter, G. (2018). Effect of polycarboxylate ether superplasticizer (PCE) on dynamic yield stress, thixotropy and flocculation state of fresh cement pastes in consideration of the Critical Micelle Concentration (CMC). Cement and Concrete Research, 107, 75-84.
125. Ferron, R. D., Shah, S., Fuente, E. and Negro, C. (2013). Aggregation and breakage kinetics of fresh cement paste. Cement and Concrete Research, 50, 1-10.
126. Jolin, M., Lemay, J.D., Ginouse, N., Bissonnete, B. and Blouin-Dallaire, E. (2015). The effect of spraying on fiber content and shotcrete properties. in Shotcrete for Underground Support XII, Singapore Metro ConsultingEds, ECI Symposium Series.
127. Paul, S. C., Tay, Y. W. D., Panda, B. and Tan, M. J. (2018). Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18(1), 311-319.
128. Mohan, M. K., Rahul, A. V., De Schutter, G. and Van Tittelboom, K. (2021). Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete. Construction and Building Materials, 275, 122136.
129. Mohan, M. K., Rahul, A. V., Van Tittelboom, K. and De Schutter, G. (2021). Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement and Concrete Research, 139, 106258.
130. Wang, L., Ma, H., Li, Z., Ma, G., and Guan, J. (2021). Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing. Additive Manufacturing, 46, 102189.
131. Pan, T.; Jiang, Y.; He, H.; Wang, Y.; Yin, K. (2021). Effect of structural build-up on interlayer bond strength of 3D printed cement mortars. Materials, 14, 236.
132. Lu, B., Li, H., Li, M., Wong, K.N. and Qian, S. (2022). Mechanism and Design of Fluid Catalytic Cracking Ash-blended Cementitious Composites for High Performance Printing. Additive Manufacturing, 103286.
133. Casson, N. (1959) A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. In: Mill, C.C., Ed., Rheology of Disperse Systems, Pergamon Press, Oxford, 84-104.
134. Quemada D. (1984). Models for rheological behavior of concentrated disperse media under shear. Advances in rheology, 2, 571-582.
135. Vom Berg, W. (1979). Influence of specific surface and concentration of solids upon the flow behaviour of cement pastes. Magazine of Concrete Research, 31(109), 211-216.
136. Jones, T. E. R., and Taylor, S. (1977). A mathematical model relating the flow curve of a cement paste to its water/cement ratio. Magazine of Concrete Research, 29(101), 207-212.
137. Jayathilakage, R., Rajeev, P. and Sanjayan, J. (2022). Rheometry for concrete 3D printing: a review and an experimental comparison. Buildings, 12, 1190.
138. Assaad, J. J., Harb, J. and Maalouf, Y. (2014). Measurement of yield stress of cement pastes using the direct shear test. Journal of Non-Newtonian Fluid Mechanics, 214, 18-27.
139. Ferraris, F. C. and Brower, L. E.(2003). Comparison of concrete rheometers Concrete International, 25(8), 41-47.
140. Ferraris, C.F., Brower, L.E. and Banfill, P. (2001). Comparison of concrete rheometers: international test at LCPC (Nantes, France) in October, 2000. National Institute of Standards and Technology Gaithersburg, MD, USA.
141. Tattersall, G. H. and Banfill, P. F. G. (1983). The Rheology of Fresh Concrete. Pitman Publishing.
142. Tanigawa, Y. and Mori, H. (1985). Rheological Analysis of Slumping Behavior of Fresh Concrete. Proceedings of the 29th Japan Congress on Materials Research, 129-136.
143. Tanigawa, Y., Mori, H., Kurokawa, Y. and Komura, R. (1992). Rheological Study on Slumping Behavior of Fresh Concrete. Transactions of the Japan Concrete Institute, 14, 1-8.
144. Chidiac, S. E., Maadani, O., Razaqpur, A. G. and Mailvaganam, N. P. (2000). Controlling the quality of fresh concrete - a new approach. Magazine of Concrete Research, 52(5), 353-363.
145. Chidiac, S. E. and Habibbeigi, F. (2005). Modelling the Rheological Behaviour of Fresh Concrete: An Elasto-Viscoplastic Finite Element Approach. Computers and Concrete, 2(2), 97-110.
146. Chidiac, S.E., Habibbeigi, F. and Chan, D. (2006). Slump and slump flow for characterizing yield stress of fresh concrete. Aci Materials Journal, 103(6), 413-418.
147. Hu, C., de Larrard, F., Sedran, T., Boulay, C., Bosc, F. and Deflorenne, F. (1996). Validation of BTRHEOM, the new rheometer for soft-to-fluid concrete. Materials and Structures, 29, 620-631.
148. Choi, M. S., Lee, J. S., Ryu, K. S., Koh, K.-T. and Kwon, S. H. (2016). Estimation of rheological properties of UHPC using mini slump test. Construction and Building Materials, 106, 632-639.
149. Philippe, C. (2005). Rheometry of pastes, suspensions, and granular materials: applications in industry and environment.
150. Zhang, L. and Thornton, C. (2007). A numerical examination of the direct shear test. Geotechnique, 57(4), 343-354.
151. Jayathilakage, R., Sanjayan, J. and Rajeev, P. (2019). Direct shear test for the assessment of rheological parameters of concrete for 3D printing applications. Materials and Structures, 52(1), 12.
152. Lu, G. and Wang, K. (2011). Theoretical and experimental study on shear behavior of fresh mortar. Cement and Concrete Composites, 33(2), 319-327.
153. Girish, S. and Santhosh, B. S. (2012). Determination of bingham parameters of fresh portland cement concrete using concrete shear box. Bonfring International Journal of Industrial Engineering and Management Science, 2(4), 84-90.
154. Alfani, R. and Guerrini, G. L. (2005). Rheological test methods for the characterization of extrudable cement-based materials - A review. Materials and Structures, 38(2), 239-247.
155. Benbow, J. and Bridgwater, J. (1993). Paste Flow and Extrusion Oxford Series on Advanced Manufacturing. Clarendon Press, Oxford, UK.
156. Basterfield, R. A., Lawrence, C. J. and Adams, M. J. (2005). On the interpretation of orifice extrusion data for viscoplastic materials. Chemical Engineering Science, 60(10), 2599-2607.
157. Perrot, A., Lanos, C., Melinge, Y. and Estelle, P. (2007). Mortar physical properties evolution in extrusion flow. Rheologica Acta, 46(8), 1065-1073.
158. Perrot, A., Me?linge, Y., Rangeard, D., Estelle?, P., Lanos, C., Co, A., … Giacomin, A. J. (2008). Extrusion Criterion for Firm Cement-Based Materials. AIP Conference Proceedings.
159. Roussel, N., Lanos, C. and Toutou, Z. (2006). Identification of Bingham fluid flow parameters using a simple squeeze test. Journal of Non-Newtonian Fluid Mechanics, 135(1), 1-7.
160. Toutou, Z., Roussel, N. and Lanos, C. (2005). The squeezing test: a tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research, 35(10), 1891-1899.
161. Tao, Y., Ren, Q., Lesage, K., Tittelboom, K.V., Yuan, Y. and Schutter, G.D. (2022). Shape stability of 3D printable concrete with river and manufactured sand characterized by squeeze flow. Cement and Concrete Composites, 133, 104674.
162. Jayathilakage, R., Sanjayan, J. and Rajeev, P. (2020). Comparison of Rheology Measurement Techniques Used in 3D Concrete Printing Applications. ICSECM 2019, 261-273.
163. Abd Elaty, M. A. and Ghazy, M. F. (2012). Flow properties of fresh concrete by using modified geotechnical Vane shear test. HBRC Journal, 8(3), 159-169.
164. Lootens, D., Jousset, P., Martinie, L., Roussel, N. and Flatt, R. J. (2009). Yield stress during setting of cement pastes from penetration tests. Cement and Concrete Research, 39(5), 401-408.
165. Roussel, N. (2006). Correlation between Yield Stress and Slump: Comparison between Numerical Simulations and Concrete Rheometers Results. Materials and Structures, 39(4), 501-509.
166. Kurokawa, Y. (1996). Study on slump test and slump-flow test of fresh concrete. Transactions of The Japan Concrete Institute, 16, 25-32.
167. Tattersall, G.H. (2014). Workability and Quality Control of Concrete. CRC Press: Boca Raton, FL, USA.
168. Struble, L. J. and Jiang, Q. (2004). Effects of air entrainment on rheology. Materials Journal, 101(6), 448-456.
169. De Larrard, F., Szitcar, J., Hu, C. and Joly, M. (1993). Design of a rheometer for fluid concretes. Bull Liaison Lab Ponts Chaussees, 186, 55-59.
170. Beaupre, D. (1994). Rheology of High Performance Shotcrete. University of British Columbia: Vancouver, BC, Canada.
171. Domone, P. L. J., Yongmo, X. and Banfill, P. F. G. (1999). Developments of the two-point workability test for high-performance concrete. Magazine of Concrete Research, 51(3), 171-179.
172. Hafid, H., Ovarlez, G., Toussaint, F. and Jezequel, P.-H. (2010) Roussel, N. Estimating measurement artifacts in concrete rheometers from MRI measurement on model materials. In Design, Production and Placement of Self-Consolidating Concrete; Springer: Berlin/Heidelberg, Germany, 127-137.
173. Ferraris, C.F., Brower, L.E., Banfill, P., Beaupre, D., Chapdelaine, F., de Larrard, F. and Domone, P. (2001). Comparison of Concrete Rheometers: International Test at LCPC (Nantes, France) in October, 2000. US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA.
174. Leighton, D. and Acrivos, A. (1987). The shear-induced migration of particles in concentrated suspensions. Journal of Fluid Mechanics, 181, 415-439.
175. Wallevik, O. H., Feys, D., Wallevik, J. E. and Khayat, K. H. (2015). Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cement and Concrete Research, 78, 100-109.
176. Ivanova, I. and Mechtcherine, V. (2020). Possibilities and challenges of constant shear rate test for evaluation of structural build-up rate of cementitious materials. Cement and Concrete Research, 130, 105974.
177. Mbasha, W., Masalova, I., Haldenwang, R. and Malkin, A. (2015). The yield stress of cement pastes as obtained by different rheological approaches. Applied Rheology. 25, 9-19.
178. Jayathilakage, R., Rajeev, P. and Sanjayan, J. (2020). Yield stress criteria to assess the buildability of 3D concrete printing. Construction and Building Materials, 240, 117989.
179. Assaad, J. J., Harb, J. and Maalouf, Y. (2014). Measurement of yield stress of cement pastes using the direct shear test. Journal of Non-Newtonian Fluid Mechanics, 214, 18-27.
180. Ritchie, A. G. B. (1962). The triaxial testing of fresh concrete. Magazine of Concrete Research, 14(40), 37-42.
181. Olsen, R.H. (1962). Lateral Pressure of Concrete on Formwork. Oklahoma State University: Stillwater, OK, USA.
182. Nair, S. A. O., Panda, S., Santhanam, M., Sant, G. and Neithalath, N. (2020). A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders. Cement and Concrete Composites, 103671.
183. Nair, S. A. O., Alghamdi, H., Arora, A., Mehdipour, I., Sant, G. and Neithalath, N. (2019). Linking Fresh Paste Microstructure, Rheology and Extrusion Characteristics of Cementitious Binders for 3D Printing. Journal of the American Ceramic Society, 102, 3951-3964.
184. Chaves Figueiredo, S., Romero Rodriguez, C., Ahmed, Z. Y., Bos, D. H., Xu, Y., Salet, T. M., … Bos, F. P. (2019). An approach to develop printable strain hardening cementitious composites. Materials & Design, 169, 107651.
185. Rahul, A. V., Sharma, A. and Santhanam, M. (2020). A desorptivity-based approach for the assessment of phase separation during extrusion of cementitious materials. Cement and Concrete Composites, 108, 103546.
186. Perrot, A., Lanos, C., Estelle, P. and Melinge, Y. (2006). Ram extrusion force for a frictional plastic material: model prediction and application to cement paste. Rheologica Acta, 45(4), 457-467.
187. Engmann, J., Servais, C. and Burbidge, A. S. (2005). Squeeze flow theory and applications to rheometry: A review. Journal of Non-Newtonian Fluid Mechanics, 132(1-3), 1-27.
188. Cardoso, F. A., John, V. M., Pileggi, R. G. and Banfill, P. F. G. (2014). Characterisation of rendering mortars by squeeze-flow and rotational rheometry. Cement and Concrete Research, 57, 79-87.
189. Chen, Y., Chaves Figueiredo, S., Yalcinkaya, C., Copuro?lu, O., Veer, F. and Schlangen, E. (2019). The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing. Materials, 12, 1374.
190. Lootens, D. and Flatt, R. (2007). Rheology of penetration tests II: Link to shear modulus. In Proceedings of the 12th Int. Conf. Cem. Chem., Montreal, QU, Canada, 8-13 July 2007, 8-13.
191. Jousset, P., Lootens, D., Roussel, N. and Flatt, R. (2007). Rheology of Penetrations Tests I: Theory and Finite Element Simulations. In Proceedings of the 12th ICCC, Montreal, QU, Canada, 8-13 July 2007, 1-12.
192. Ma, L., Zhang, Q., Lombois-Burger, H., Jia, Z., Niu, G. and Zhang, Y. (2022). Pore structure, internal relative humidity, and fiber orientation of 3D printed concrete with polypropylene fiber and their relation with shrinkage. Journal of Building Engineering, 61, 105250.
193. Kondepudi, K., Subramaniam, K.V.L., Nematollahi, B., Bong, S.H. and Sanjayan, J. (2022). Study of particle packing and paste rheology in alkali activated mixtures to meet the rheology demands of 3D Concrete Printing. Cement and Concrete Composites. 131, 104581.
194. Li, Z., Wang, L. and Ma, G. (2018). Method for the Enhancement of Buildability and Bending Resistance of 3D Printable Tailing Mortar. International Journal of Concrete Structures and Materials, 12(1), 37-48.
195. Marchment, T. and Sanjayan, J. (2018). Method of Enhancing Interlayer Bond Strength in 3D Concrete Printing. First RILEM International Conference on Concrete and Digital Fabrication - Digital Concrete 2018, 148-156.
196. Ma, G., Li, Z., Wang, L., Wang, F. and Sanjayan, J. (2019). Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials, 202, 770-783.
197. Assaad, J. J., Hamzeh, F. and Hamad, B. (2020). Qualitative assessment of interfacial bonding in 3D printing concrete exposed to frost attack. Case Studies in Construction Materials, 13, e00357.
198. Che, Y. and Yang, H. (2022). Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate. Case Studies in Construction Materials, 17, e01590.
199. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F. and Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42(3), 558-566.
200. Nerella, V. N., Hempel, S. and Mechtcherine, V. (2019). Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Construction and Building Materials, 205, 586-601.
201. Geng, Z., She, W., Zuo, W., Lyu, K., Pan, H., Zhang, Y. and Miao, C. (2020). Layer-interface properties in 3D printed concrete: Dual hierarchical structure and micromechanical characterization. Cement and Concrete Research, 138, 106220.
202. Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G. and Van Tittelboom, K. (2019) Microstructural Characterization of 3D Printed Cementitious Materials. Materials, 12, 2993.
203. Roussel, N. and Cussigh, F. (2008). Distinct-layer casting of SCC: The mechanical consequences of thixotropy. Cement and Concrete Research, 38(5), 624-632.
204. Roussel, N., Ovarlez, G., Garrault, S. and Brumaud, C. (2012). The origins of thixotropy of fresh cement pastes. Cement and Concrete Research, 42(1), 148-157.
205. Subramaniam, K. V. and Wang, X. (2010). An investigation of microstructure evolution in cement paste through setting using ultrasonic and rheological measurements. Cement and Concrete Research, 40(1), 33-44.
206. Keita, E., Bessaies-Bey, H., Zuo, W., Belin, P. and Roussel, N. (2019). Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cement and Concrete Research, 123, 105787.
207. Cohen, M. D., Olek, J. and Dolch, W. L. (1990). Mechanism of plastic shrinkage cracking in portland cement and portland cement-silica fume paste and mortar. Cement and Concrete Research, 20(1), 103-119.
208. Dressler, I., Freund, N. and Lowke, D. (2020). The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing. Materials. 13(2), 374.
209. Xu, Y., Yuan, Q., Li, Z., Shi, C., Wu, Q. and Huang, Y. (2021). Correlation of interlayer properties and rheological behaviors of 3DPC with various printing time intervals. Additive Manufacturing, 47, 102327.
210. Baroghel-Bouny, V., Thiery, M., Dierkens, M. and Wang, X. (2016). Aging and durability of concrete in lab and in field conditions - pore structure and moisture content gradients between inner and surface zones in RC structural elements. Journal of Sustainable Cement-Based Materials, 6(3), 149-194.
211. Chen, H., Zhu, Z., Lin, J., Xu, W. and Liu, L. (2018). Numerical modeling on the influence of particle shape on ITZ’s microstructure and macro-properties of cementitious composites: a critical review. Journal of Sustainable Cement-Based Materials, 1-22.
212. Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D. and Tan, M. J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108-116.
213. Siddika, A., Mamun, M. A. A., Ferdous, W., Saha, A. K. and Alyousef, R. (2019). 3D-printed concrete: applications, performance, and challenges. Journal of Sustainable Cement-Based Materials, 1-38.
214. Mengel, L., Krauss, H.W. and Lowke, D. (2020). Water transport through cracks in plain and reinforced concrete - Influencing factors and open questions. Construction and Building Materials, 254, 118990.
215. Honglei, C., Zuquan, J., Tiejun, Z., Benzhen, W., Zhe, L. and Jian, L. (2020). Capillary suction induced water absorption and chloride transport in non-saturated concrete: The influence of humidity, mineral admixtures and sulfate ions. Construction and Building Materials, 236, 117581.
216. Cantero, B., Bravo, M., de Brito, J., Saez del Bosque, I. F. and Medina, C. (2021). Water transport and shrinkage in concrete made with ground recycled concrete-additioned cement and mixed recycled aggregate. Cement and Concrete Composites, 118, 103957.
217. Tay, Y. W. D., Ting, G. H. A., Qian, Y., Panda, B., He, L. and Tan, M. J. (2018). Time gap effect on bond strength of 3D-printed concrete. Virtual and Physical Prototyping, 14(1), 104-113.
218. Yuan, Q., Xie, Z., Yao, H., Huang, T., Li, Z. and Zhen X. (2022). Effect of polyacrylamide on the workability and interlayer interface properties of 3D printed cementitious materials. Journal of Materials Research and Technology, 19, 3394-3405.
219. Rahul, A. V., Santhanam, M., Meena, H. and Ghani, Z. (2019). Mechanical characterization of 3D printable concrete. Construction and Building Materials, 227, 116710.
220. Alchaar, A. S. and Al-Tamimi, A. K. (2021). Mechanical properties of 3D printed concrete in hot temperatures. Construction and Building Materials, 266, 120991.
221. Hosseini, E., Zakertabrizi, M., Korayem, A. H. and Xu, G. (2019). A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cement and Concrete Composites, 99, 112-119.
222. Van Der Putten, J., De Schutter, G. and Van Tittelboom, K. (2019). Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials. RILEM Technical Letters, 4, 33-38.
223. Zareiyan, B. and Khoshnevis, B. (2017). Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction, 83, 212-221.
224. Weng, Y., Li, M., Wong, T. N. and Tan, M. J. (2021). Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. Automation in Construction, 123, 103546.
225. Hosseini, E., Zakertabrizi, M., Korayem, A. H. and Xu, G. (2019). A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cement and Concrete Composites, 99, 112-119.
226. Perrot, A., Jacquet, Y., Rangeard, D., Courteille, E. and Sonebi, M. (2020). Nailing of Layers: A Promising Way to Reinforce Concrete 3D Printing Structures. Materials, 13(7), 1518.
227. Cao, X., Yu, S., Zheng, D. and Cui, H. (2022). Nail planting to enhance the interface bonding strength in 3D printed concrete. Automation in Construction, 141, 104392.
228. Wang, L., Ma, G., Liu, T., Buswell, R. and Li, Z. (2021). Interlayer reinforcement of 3D printed concrete by the in-process deposition of U-nails. Cement and Concrete Research, 148, 106535.
229. Panda, B., Chandra Paul, S. and Jen Tan, M. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters, 209, 146-149.
230. Wi, K., Wang, K., Taylor, P. C., Laflamme, S., Sritharan, S. and Qin, H. (2021). Properties and microstructure of extrusion-based 3D printing mortar containing a highly flowable, rapid set grout. Cement and Concrete Composites, 124, 104243.
231. Panda, B., Paul, S. C., Hui, L. J., Tay, Y. W. D. and Tan, M. J. (2017). Additive manufacturing of geopolymer for sustainable built environment. Journal of Cleaner Production, 167, 281-288.
232. Feng, P., Meng, X., Chen, J.F. and Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials, 93, 486-497.
233. Soltan, D. G. and Li, V. C. (2018). A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites, 90, 1-13.
234. Xiao, J., Liu, H. and Ding, T. (2020). Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure. Additive Manufacturing, 39, 101712.
235. Ho, D. W. S. and Lewis, R. K. (1987). Carbonation of concrete and its prediction. Cement and Concrete Research, 17(3), 489-504.
236. Basheer, L., Kropp, J. and Cleland, D. J. (2001). Assessment of the durability of concrete from its permeation properties: a review. Construction and Building Materials, 15(2-3), 93-103.
237. Assaad, J. J., Hamzeh, F. and Hamad, B. (2020). Qualitative assessment of interfacial bonding in 3D printing concrete exposed to frost attack. Case Studies in Construction Materials, 13, e00357.
238. Baz, B., Aouad, G., Kleib, J., Bulteel, D. and Remond, S. (2021). Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments. Construction and Building Materials, 290, 123220.
239. Zhang, H., Xiao, J., Duan, Z., Zou, S. and Xia, B. (2022). Effects of printing paths and recycled fines on drying shrinkage of 3D printed mortar. Construction and Building Materials, 342, 128007.
240. Moelich, G. M., Kruger, J. and Combrinck, R. (2020). Plastic shrinkage cracking in 3D printed concrete. Composites Part B: Engineering, 200, 108313.
241. Moein, M.M., Saradar, A., Rahmati, K., Rezakhani, Y., Ashkan, S.A. and Karakouzian, M. (2023). Reliability analysis and experimental investigation of impact resistance of concrete reinforced with polyolefin fiber in different shapes, lengths, and doses. Journal of Building Engineering, 69, 106262.
242. ACI Committee 544, Guide to Design with Fiber-Reinforced Concrete. ACI 544.4R-18, American Concrete Institute, Farmington Hills, MI, 2018.
243. Ding, T., Xiao, J., Zou, S. and Zhou, X. (2020). Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Composite Structures, 254, 112808.
244. ACI Committee 544, Report on Fiber-Reinforced Concrete. ACI 544.1R-15, American Concrete Institute, Farmington Hills, MI, 2015.
245. Xu, H., Shao, Z., Wang, Z., Cai, L., Li, Z., Jin, H. amd Chen, T. (2020). Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber. Construction and Building Materials, 261, 120610.
246. Rooholamini, H., Hassani, A. and Aliha, M. R. M. (2018). Fracture properties of hybrid fibre-reinforced roller-compacted concrete in mode I with consideration of possible kinked crack. Construction and Building Materials, 187, 248-256.
247. Silva, G., Kim, S., Aguilar, R. and Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers-A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132.
248. Wu, F., Yu, Q. and Chen, X. (2022). Effects of steel fibre type and dosage on abrasion resistance of concrete against debris flow. Cement and Concrete Composites, 134, 104776.
249. Ren, G. M., Wu, H., Fang, Q. and Liu, J. Z. (2018). Effects of steel fiber content and type on static mechanical properties of UHPCC. Construction and Building Materials, 163, 826-839.
250. Rios, J. D., Leiva, C., Ariza, M. P., Seitl, S. and Cifuentes, H. (2019). Analysis of the tensile fracture properties of ultra-high-strength fiber-reinforced concrete with different types of steel fibers by X-ray tomography. Materials & Design, 165, 107582.
251. Zheng, W., Luo, B. and Wang, Y. (2013). Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures. Construction and Building Materials, 41, 844-851.
252. Li, B., Xu, L., Shi, Y., Chi, Y., Liu, Q. and Li, C. (2018). Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete. Construction and Building Materials, 181, 474-486.
253. Wang, X., Fan, F., Lai, J. and Xie, Y. (2021). Steel fiber reinforced concrete: A review of its material properties and usage in tunnel lining. Structures, 34, 1080-1098.
254. Abadel, A., Abbas, H., Almusallam, T., Al-Salloum, Y. and Siddiqui, N. (2016). Mechanical properties of hybrid fibre-reinforced concrete–analytical modelling and experimental behaviour. Magazine of Concrete Research, 68(16), 823-843.
255. Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H., Sanjayan, J. G. and Khayat, K. H. (2021). Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cement and Concrete Research, 143, 106384.
256. Rashedi, A., Marzouki, R., Raza, A., Ali, K., Olaiya, N. G. and Kalimuthu, M. (2022). Glass FRP-Reinforced Geopolymer Based Columns Comprising Hybrid Fibres: Testing and FEA Modelling. Polymers, 14(2), 324.
257. Kumar, Y. N., Kumar, B. D. and Swami, B. L. P. (2022). Mechanical properties of geopolymer concrete reinforced with steel and glass fibers with various mineral admixtures. Materials Today: Proceedings, 52, 632-641.
258. Matykiewicz, D., Barczewski, M., Knapski, D. and Skorczewska, K. (2017). Hybrid effects of basalt fibers and basalt powder on thermomechanical properties of epoxy composites. Composites Part B: Engineering, 125, 157-164.
259. Afroz, M., Patnaikuni, I. and Venkatesan, S. (2017). Chemical durability and performance of modified basalt fiber in concrete medium. Construction and building materials, 154, 191-203.
260. Korniejenko, K., ?ach, M., Chou, S. Y., Lin, W. T., Cheng, A., Hebdowska-Krupa, M., ... Miku?a, J. (2020). Mechanical properties of short fiber-reinforced geopolymers made by casted and 3D printing methods: A comparative study. Materials, 13(3), 579.
261. Li, Z., Shen, A., Chen, Z., Guo, Y. and Yang, X. (2022). Research progress on properties of basalt fiber-reinforced cement concrete. Materials Today Communications, 104824.
262. Wang, T., Fan, X., Gao, C., Qu, C., Liu, J. and Yu, G. (2023). The influence of fiber on the mechanical properties of geopolymer concrete: a review. Polymers, 15(4), 827.
263. Chung, D. D. (2005). Dispersion of short fibers in cement. Journal of materials in civil engineering, 17(4), 379-383.
264. Muthukumarana, T. V., Arachchi, M. A. V. H. M., Somarathna, H. M. C. C. and Raman, S. N. (2023). A review on the variation of mechanical properties of carbon fibre-reinforced concrete. Construction and Building Materials, 366, 130173.
265. Newcomb, B. A. (2016). Processing, structure, and properties of carbon fibers. Composites Part A: Applied Science and Manufacturing, 91, 262-282.
266. Zhang, J., Chevali, V. S., Wang, H. and Wang, C. H. (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering, 193, 108053.
267. Abbas, A. G. N., Aziz, F. N. A. A., Abdan, K., Nasir, N. A. M. and Huseien, G. F. (2022). A state-of-the-art review on fibre-reinforced geopolymer composites. Construction and Building Materials, 330, 127187.
268. Deng, Z. (2005). The fracture and fatigue performance in flexure of carbon fiber reinforced concrete. Cement and Concrete Composites, 27(1), 131-140.
269. Pirmohammad, S., Shokorlou, Y. M. and Amani, B. (2020). Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers. Engineering Fracture Mechanics, 226, 106875.
270. Fu, Q., Zhou, Z., Wang, Z., Huang, J. and Niu, D. (2022). Insight into dynamic compressive response of carbon nanotube/carbon fiber-reinforced concrete. Cement and Concrete Composites, 129, 104471.
271. Liu, B., Guo, J., Wen, X., Zhou, J. and Deng, Z. (2020). Study on flexural behavior of carbon fibers reinforced coral concrete using digital image correlation. Construction and Building Materials, 242, 117968.
272. Liu, B., Guo, J., Zhou, J., Wen, X., Deng, Z., Wang, H. and Zhang, X. (2020). The mechanical properties and microstructure of carbon fibers reinforced coral concrete. Construction and Building Materials, 249, 118771.
273. Schneider, K., Michel, A., Liebscher, M., Terreri, L., Hempel, S. and Mechtcherine, V. (2019). Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures. Cement and Concrete Composites, 97, 68-77.
274. Goldfeld, Y., Rabinovitch, O., Fishbain, B., Quadflieg, T. and Gries, T. (2016). Sensory carbon fiber based textile-reinforced concrete for smart structures. Journal of Intelligent Material Systems and Structures, 27(4), 469-489.
275. Chen, M., Gao, P., Geng, F., Zhang, L. and Liu, H. (2017). Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Construction and Building Materials, 142, 320-327.
276. Sassani, A., Ceylan, H., Kim, S., Gopalakrishnan, K., Arabzadeh, A. and Taylor, P. C. (2017). Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete. Construction and Building Materials, 152, 168-181.
277. Farooq, M., Krishna, A. and Banthia, N. (2022). Highly ductile fiber reinforced geopolymers under tensile impact. Cement and Concrete Composites, 126, 104374.
278. Curosu, I., Liebscher, M., Alsous, G., Muja, E., Li, H., Drechsler, A. ... Mechtcherine, V. (2020). Tailoring the crack-bridging behavior of strain-hardening cement-based composites (SHCC) by chemical surface modification of poly (vinyl alcohol)(PVA) fibers. Cement and Concrete Composites, 114, 103722.
279. Si, W., Cao, M. and Li, L. (2020). Establishment of fiber factor for rheological and mechanical performance of polyvinyl alcohol (PVA) fiber reinforced mortar. Construction and Building Materials, 265, 120347.
280. Tran, N. P., Gunasekara, C., Law, D. W., Houshyar, S. and Setunge, S. (2022). Microstructural characterisation of cementitious composite incorporating polymeric fibre: A comprehensive review. Construction and Building Materials, 335, 127497.
281. Yao, Z., Wang, C., Wang, Y., Qin, J., Ma, Z., Cui, X. ... Wei, H. (2022). Effect of CNTs deposition on carbon fiber followed by amination on the interfacial properties of epoxy composites. Composite Structures, 292, 115665.
282. Haque, M., Rahman, R., Islam, N., Huque, M. and Hasan, M. (2010). Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. Journal of reinforced plastics and composites, 29(15), 2253-2261.
283. Chandar, S. P. and Kumar, S. S. (2022). Mechanical properties of fiber reinforced concrete–natural fibers: A review. Materials Today: Proceedings.
284. Cui, S., Sheng, Y., Wang, Z., Jia, H., Qiu, W., Temitope, A. A. and Xu, Z. (2022). Effect of the fiber surface treatment on the mechanical performance of bamboo fiber modified asphalt binder. Construction and Building Materials, 347, 128453.
285. Pan, Y., Deng, L., Li, S., Wang, J. and Zhang, F. (2022). A study using a combined method of scientometric and manual analysis to review the present research of plant fibres reinforced concrete. Construction and Building Materials, 341, 127551.
286. Bentur, A. and Mindess, S. (2006). Fibre reinforced cementitious composites. Crc Press.
287. Vairagade, V. S. and Dhale, S. A. (2023). Hybrid fibre reinforced concrete–A state of the art review. Hybrid Advances, 3, 100035.
288. Hou, J. and Chung, D. D. L. (1997). Cathodic protection of steel reinforced concrete facilitated by using carbon fiber reinforced mortar or concrete. Cement and concrete research, 27(5), 649-656.
289. Banthia, N. and Sheng, J. (1990). Micro-reinforced cementitious materials. MRS Online Proceedings Library (OPL), 211, 25.
290. Feldman, D. and Zheng, Z. (1993). Synthetic fibres for fibre concrete composites. MRS Online Proceedings Library (OPL), 305, 123.
291. Komlo?, K., Babal, B. and Nurnbergerova, T. (1995). Hybrid fibre-reinforced concrete under repeated loading. Nuclear Engineering and Design, 156(1-2), 195-200.
292. Kim, N. W., Saeki, N. and Horiguchi, T. (2000). Crack and strength properties of hybrid fiber reinforced concrete at early ages. Transactions of the Japan Concrete Institute, 21, 241-246.
293. Hua, Y., Qi, H. B., Jiang, Z. Q., Huang, S. Z. and Zhang, S. B. (2000). Study on the bending fatigue damage of the carbon and the polypropylene hybrid fiber reinforced concrete. Key Engineering Materials, 183, 571-576.
294. Qi, H. B., Hua, Y., Jiang, Z. Q., Huang, S. Z. and Zhang, S. B. (2000). Microstructure of the Carbon and the Polypropylene Hydrid Fiber Reinforced Concrete Acted by Bending and Tensile Stress. Key Engineering Materials, 183, 881-886.
295. Horiguchi, T. and Sakai, K. (1999). Hybrid effects of fiber-reinforced concrete on fracture toughness. Special Publication, 172, 535-548.
296. Stroeven, P., Shui, Z., Qian, C. and Cheng, Y. (2001). Properties of carbon-steel and polypropylene-steel hybrid fiber concrete in low-volume fraction range. Special Publication, 200, 713-732.
297. Bhosale, A. B. and Prakash, S. S. (2020). Crack propagation analysis of synthetic vs. steel vs. hybrid fibre-reinforced concrete beams using digital image correlation technique. International Journal of Concrete Structures and Materials, 14(1), 1-19.
298. Rahmati, K., Saradar, A., Mohtasham Moein, M., Sardrinejad, I., Bristow, J., Yavari, A. and Karakouzian, M. (2023). Evaluation of Engineered Cementitious Composites (ECC) containing Polyvinyl Alcohol (PVA) fibers under compressive, direct tensile, and drop-weight test. Multiscale and Multidisciplinary Modeling, Experiments and Design, 6(1), 147-164.
299. Bayar, G. and Bilir, T. (2019). A novel study for the estimation of crack propagation in concrete using machine learning algorithms. Construction and Building Materials, 215, 670-685.
300. Wu, B. and Tang, K. (2019). Modelling on crack propagation behaviours at concrete matrix?aggregate interface. Fatigue & Fracture of Engineering Materials & Structures, 42(8), 1803-1814.
301. Kazemi, M., Hajforoush, M., Talebi, P. K., Daneshfar, M., Shokrgozar, A., Jahandari, S., ... Li, J. (2020). In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test. Journal of Sustainable Cement-Based Materials, 9(5), 289-306.
302. Mohtasham Moein, M., Saradar, A., Rahmati, K., Hatami Shirkouh, A., Sadrinejad, I., Aramali, V. and Karakouzian, M. (2022). Investigation of impact resistance of high-strength portland cement concrete containing steel fibers. Materials, 15(20), 7157.
303. Rahmani, T., Kiani, B., Shekarchi, M. and Safari, A. (2012). Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Construction and Building Materials, 37, 360-369.
304. Patel, P. A., Desai, A. K. and Desai, J. A. (2010). Improvement of shear strength using triangular shape fiber in concrete. NBM & CW, a civil engg magazine.
305. Shesan, O. J., Stephen, A. C., Chioma, A. G., Neerish, R. and Rotimi, S. E. (2019). Fiber-matrix relationship for composites preparation. Renewable and sustainable composites, 1-30.
306. Kim, J.K. and Mai, Y.W. (1993). Interfaces in composites, Materials Science and Technology: Vol. 13-Structure and Properties of Fibre Composites.
307. Lin, C., Kanstad, T., Jacobsen, S. and Ji, G. (2023). Bonding property between fiber and cementitious matrix: A critical review. Construction and Building Materials, 378, 131169.
308. Azeem, M. and Saleem, M. A. (2020). Role of electrostatic potential energy in carbon nanotube augmented cement paste matrix. Construction and Building Materials, 239, 117875.
309. Wang, Y., Hu, S. and Sun, X. (2022). Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Construction and Building Materials, 338, 127570.
310. Swolfs, Y., Gorbatikh, L. and Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181-200.
311. Liu, J., Jia, Y. and Wang, J. (2019). Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete. Fibers and Polymers, 20, 1900-1908.
312. Gao, D. and Zhang, L. (2018). Flexural performance and evaluation method of steel fiber reinforced recycled coarse aggregate concrete. Construction and Building Materials, 159, 126-136.
313. Cheng, Z., Lu, Y., An, J., Zhang, H. and Li, S. (2022). Multi-scale reinforcement of multi-walled carbon nanotubes/polyvinyl alcohol fibers on lightweight engineered geopolymer composites. Journal of Building Engineering, 57, 104889.
314. Asprone, D., Menna, C., Bos, F. P., Salet, T. A. M., Mata-Falcon, J. and Kaufmann, W. (2018). Rethinking reinforcement for digital fabrication with concrete. Cement and Concrete Research, 112, 111-121.
315. Perrot, A., Rangeard, D., Nerella,V.N. and Mechtcherine, V. (2018). Extrusion of cement?based materials?an overview. RILEM Technical Letters, 3, 91-97.
316. Zhang, Y. and Aslani, F. (2021). Development of fibre reinforced engineered cementitious composite using polyvinyl alcohol fibre and activated carbon powder for 3D concrete printing. Construction and Building Materials, 303, 124453.
317. Ahmadi, S. F., Reisi, M. and Amiri, M. C. (2022). Reusing granite waste in eco-friendly foamed concrete as aggregate. Journal of Building Engineering, 46, 103566.
318. Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y. and Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125.
319. York, I. N. and Europe, I. (2021). Concrete needs to lose its colossal carbon footprint. Nature, 597(7878), 593-594.
320. Miller, S. A., Horvath, A. and Monteiro, P. J. M. (2016). Readily implementable techniques can cut annual CO2emissions from the production of concrete by over 20%. Environmental Research Letters, 11(7), 074029.
321. Gencel, O., Karadag, O., Oren, O. H. and Bilir, T. (2021). Steel slag and its applications in cement and concrete technology: A review. Construction and Building Materials, 283, 122783.
322. Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195-217.
323. Tosti, L., van Zomeren, A., Pels, J. R., Damgaard, A. and Comans, R. N. (2020). Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products. Journal of cleaner production, 245, 118937.
324. Tan, C., Yu, X. and Guan, Y. (2022). A technology-driven pathway to net-zero carbon emissions for China′s cement industry. Applied Energy, 325, 119804.
325. Andrew, R.M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10, 195-217.
326. UN environment programme, Greening Cement Production Has a Big Role to Play in Reducing Greenhouse Gas Emissions: https://www.unep.org/resources/report/greening-cement-production-has-big-role-play-reducing-greenhouse-gas-emissions.
327. Devi, V. S. and Gnanavel, B. K. (2014). Properties of concrete manufactured using steel slag. Procedia Engineering, 97, 95-104.
328. Kurda, R., de Brito, J. and Silvestre, J. D. (2017). Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 84, 198-213.
329. Sharifi, Y., Afshoon, I., Asad-Abadi, S. and Aslani, F. (2020). Environmental protection by using waste copper slag as a coarse aggregate in self-compacting concrete. Journal of Environmental Management, 271, 111013.
330. Ni, S., Liu, H., Li, Q., Quan, H., Gheibi, M., Fathollahi-Fard, A.M. and Tian, G. (2022). Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes. Journal of Cleaner Production, 365, 132780.
331. Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., … Du, S. (2021). Large-scale 3D printing concrete technology: Current status and future opportunities. Cement and Concrete Composites, 122, 104115.
332. Hao, J., Chen, Z., Zhang, Z. and Loehlein, G. (2021). Quantifying construction waste reduction through the application of prefabrication: a case study in Anhui, China. Environmental Science and Pollution Research, 28, 24499-24510.
333. Cheng, B., Huang, J., Lu, K., Li, J., Gao, G., Wang, T. and Chen, H. (2022). BIM-enabled life cycle assessment of concrete formwork waste reduction through prefabrication. Sustainable Energy Technologies and Assessments, 53(Part A), 102449.
334. International Energy Agency. (2021): https://www.iea.org/reports/cement.
335. Khunt, Y., Khamar, N., Nathwani, V., Joshi, T. and Dave, U. (2022). Investigation on mechanical parameters of concrete having sustainable materials. Materials Today: Proceedings, 66, 2292-2297.
336. Fonseca, M. and Matos, A. M. (2023). 3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities. Materials, 16(6), 2458.
337. Juenger, M. C. G., Winnefeld, F., Provis, J. L. and Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and concrete research, 41(12), 1232-1243.
338. Tironi, A., Trezza, M. A., Scian, A. N. and Irassar, E. F. (2013). Assessment of pozzolanic activity of different calcined clays. Cement and concrete composites, 37, 319-327.
339. Siddique, R. (2011). Effect of volcanic ash on the properties of cement paste and mortar. Resources, Conservation and Recycling, 56(1), 66-70.
340. Hossain, K. M. A. and Lachemi, M. (2006). Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cement and concrete research, 36(6), 1123-1133.
341. Lemougna, P. N., Wang, K. T., Tang, Q., Nzeukou, A. N., Billong, N., Melo, U. C. and Cui, X. M. (2018). Review on the use of volcanic ashes for engineering applications. Resources, Conservation and Recycling, 137, 177-190.
342. Contrafatto, L. (2017). Recycled Etna volcanic ash for cement, mortar and concrete manufacturing. Construction and Building Materials, 151, 704-713.
343. Li, W., Hua, L., Shi, Y., Wang, P., Liu, Z., Cui, D. and Sun, X. (2022). Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Applied Clay Science, 229, 106674.
344. Cai, R., He, Z., Tang, S., Wu, T. and Chen, E. (2018). The early hydration of metakaolin blended cements by non-contact impedance measurement. Cement and Concrete Composites, 92, 70-81.
345. Zhang, T., Yue, X., Deng, Y., Zhang, D. and Liu, S. (2014). Mechanical behaviour and micro-structure of cement-stabilised marine clay with a metakaolin agent. Construction and Building Materials, 73, 51-57.
346. Rashad, A. M. (2013). Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview. Construction and building materials, 41, 303-318.
347. Skibsted, J. and Snellings, R. (2019). Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, 124, 105799.
348. Li, Q., Geng, H., Shui, Z. and Huang, Y. (2015). Effect of metakaolin addition and seawater mixing on the properties and hydration of concrete. Applied Clay Science, 115, 51-60.
349. Qian, X., Wang, J., Wang, L. and Fang, Y. (2019). Enhancing the performance of metakaolin blended cement mortar through in-situ production of nano to sub-micro calcium carbonate particles. Construction and Building Materials, 196, 681-691.
350. Scrivener, K. L. (2014). Options for the future of cement. Indian Concrete Journal, 88(7), 11-21.
351. Zhang, Z., Wang, Q. and Chen, H. (2016). Properties of high-volume limestone powder concrete under standard curing and steam-curing conditions. Powder Technology, 301, 16-25.
352. Soroka, I. and Stern, N. (1976). Calcareous fillers and the compressive strength of portland cement. Cement and Concrete Research, 6(3), 367-376.
353. Kakali, G., Tsivilis, S., Aggeli, E. and Bati, M. (2000). Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cement and concrete Research, 30(7), 1073-1077.
354. Ramezanianpour, A. M. and Hooton, R. D. (2014). A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cement and Concrete Composites, 51, 1-13.
355. Dong, Y., Liu, Y. and Hu, C. (2023). Towards greener ultra-high performance concrete based on highly-efficient utilization of calcined clay and limestone powder. Journal of Building Engineering, 66, 105836.
356. Liu, Y., Zhang, Y., Dong, B. and Wang, Y. (2023). Limestone powder activated by sodium aluminate: Hydration and microstructure. Construction and Building Materials, 368, 130446.
357. Matschei, T., Lothenbach, B. and Glasser, F. P. (2007). The AFm phase in Portland cement. Cement and concrete research, 37(2), 118-130.
358. Lothenbach, B., Le Saout, G., Gallucci, E. and Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38(6), 848-860.
359. International Energy Agency. (2018). Renewables 2018, Analysis and forecasts to 2023, executive summary. Abu Dhabi: IEA.
360. Dey, D., Srinivas, D., Panda, B., Suraneni, P. and Sitharam, T. G. (2022). Use of industrial waste materials for 3D printing of sustainable concrete: A review. Journal of cleaner production, 130749.
361. ASTM International. (2021). ASTM C618/C618M-21 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International.
362. Gadore, V. and Ahmaruzzaman, M. (2021). Tailored fly ash materials: A recent progress of their properties and applications for remediation of organic and inorganic contaminants from water. Journal of Water Process Engineering, 41, 101910.
363. Abualrous, Y., Panesar, D. K., Hooton, R. D. and Singh, B. (2016). Particle size analysis as a means to better understand the influence of fly ash variability in concrete. Resilient Infrastructure, Canadian Society for Civil Engineering: MAT-759-1 to MAT-759-8.
364. Feng, J., Sun, J. and Yan, P. (2018). The influence of ground fly ash on cement hydration and mechanical property of mortar. Advances in Civil Engineering, 2018, 4023178.
365. Wang, W. C., Xue, J. C. and Huang, W. H. (2022). Study of engineering properties of low-pH self-compacting concrete for concrete plug. Case Studies in Construction Materials, 16, e01060.
366. Williams, K. C. and Partheeban, P. (2018). An experimental and numerical approach in strength prediction of reclaimed rubber concrete. Advances in concrete construction, 6(1), 87.
367. Mehta, A. and Ashish, D. K. (2020). Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29, 100888.
368. Lewis, R. C. (2018). Silica fume. Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4, 99-121.
369. Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened properties. Resources, Conservation and Recycling, 55(11), 923-932.
370. Imam, A., Kumar, V. and Srivastava, V. (2018). Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Advances in concrete construction, 6(2), 145.
371. Yue, Y., Wang, J. J. and Bai, Y. (2018). Tracing the status of silica fume in cementitious materials with Raman microscope. Construction and Building Materials, 159, 610-616.
372. Shi, J., Tan, J., Liu, B., Chen, J., Dai, J. and He, Z. (2021). Experimental study on full-volume slag alkali-activated mortars: air-cooled blast furnace slag versus machine-made sand as fine aggregates. Journal of Hazardous Materials, 403, 123983.
373. 中聯資源:Retrieved December 3, 2023, from https://www.chc.com.tw/
374. Hung, C. C., Chang, J. N., Wang, H. Y. and Wen, F. L. (2022). Effect of Adding Waste Polyethylene and GGBFS on the Engineering Properties of Cement Mortar. Applied Sciences, 12(24), 12665.
375. Ramakrishnan, K., Pugazhmani, G., Sripragadeesh, R., Muthu, D. and Venkatasubramanian, C. (2017). Experimental study on the mechanical and durability properties of concrete with waste glass powder and ground granulated blast furnace slag as supplementary cementitious materials. Construction and Building Materials, 156, 739-749.
376. Shi, J., Liu, B., Chu, S. H., Zhang, Y., Zhang, Z. and Han, K. (2022). Recycling air-cooled blast furnace slag in fiber reinforced alkali-activated mortar. Powder Technology, 407, 117686.
377. Rios, J. D., Vahi, A., Leiva, C., Martinez-De la Concha, A. and Cifuentes, H. (2019). Analysis of the utilization of air-cooled blast furnace slag as industrial waste aggregates in self-compacting concrete. Sustainability, 11(6), 1702.
378. Tomczyk, A., Soko?owska, Z. and Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215.
379. Tan, K., Pang, X., Qin, Y. and Wang, J. (2020). Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures. Construction and Building Materials, 263, 120616.
380. Hu, L., He, Z. and Zhang, S. (2020). Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. Journal of Cleaner Production, 264, 121744.
381. Gupta, S., Tulliani, J. M. and Kua, H. W. (2022). Carbonaceous admixtures in cementitious building materials: Effect of particle size blending on rheology, packing, early age properties and processing energy demand. Science of the Total Environment, 807, 150884.
382. Cosentino, I., Restuccia, L., Ferro, G. A. and Tulliani, J. M. (2019). Type of materials, pyrolysis conditions, carbon content and size dimensions: the parameters that influence the mechanical properties of biochar cement-based composites. Theoretical and Applied Fracture Mechanics, 103, 102261.
383. Danish, A., Mosaberpanah, M. A., Salim, M. U., Ahmad, N., Ahmad, F. and Ahmad, A. (2021). Reusing biochar as a filler or cement replacement material in cementitious composites: A review. Construction and Building Materials, 300, 124295.
384. Della, V. P., Kuhn, I. and Hotza, D. (2002). Rice husk ash as an alternate source for active silica production. Materials letters, 57(4), 818-821.
385. Shahas, S., Girija, K. and Nazeer, M. (2023). Evaluation of pozzolanic activity of ternary blended supplementary cementitious material with rice husk ash and GGBS. Materials Today: Proceedings.
386. Willson, J. D., Dougherty, C. P., Ireland, M. L. and Davis, I. M. (2005). Core stability and its relationship to lower extremity function and injury. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 13(5), 316-325.
387. Habeeb, G. A. and Fayyadh, M. M. (2009). Rice husk ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage. Australian Journal of Basic and Applied Sciences, 3(3), 1616-1622.
388. Franca, S., Figueiredo, P. F., Sousa, L. N., Silva, M. V. D. M. S., Borges, P. H. R. and da Silva Bezerra, A. C. (2023). Reaction mechanisms in geopolymers produced from sugarcane bagasse ash. Construction and Building Materials, 377, 131124.
389. Kolawole, J. T., Olusola, K. O., Babafemi, A. J., Olalusi, O. B. and Fanijo, E. (2021). Blended cement binders containing bamboo leaf ash and ground clay brick waste for sustainable concrete. Materialia, 15, 101045.
390. Ma, W., Wang, Y., Huang, L., Yan, L. and Kasal, B. (2023). Natural and recycled aggregate concrete containing rice husk ash as replacement of cement: Mechanical properties, microstructure, strength model and statistical analysis. Journal of Building Engineering, 66, 105917.
391. Osial, M., Pregowska, A., Wilczewski, S., Urba?ska, W. and Giersig, M. (2022). Waste Management for Green Concrete Solutions: A Concise Critical Review. Recycling, 7(3), 37.
392. Wang, H. Y., Kuo, W. T., Lin, C. C. and Po-Yo, C. (2013). Study of the material properties of fly ash added to oyster cement mortar. Construction and Building Materials, 41, 532-537.
393. Yoon, G. L., Kim, B. T., Kim, B. O. and Han, S. H. (2003). Chemical–mechanical characteristics of crushed oyster-shell. Waste Management, 23(9), 825-834.
394. Kuo, W. T., Wang, H. Y., Shu, C. Y. and Su, D. S. (2013). Engineering properties of controlled low-strength materials containing waste oyster shells. Construction and Building Materials, 46, 128-133.
395. Lertwattanaruk, P., Makul, N. and Siripattarapravat, C. (2012). Utilization of ground waste seashells in cement mortars for masonry and plastering. Journal of environmental management, 111, 133-141.
396. Yu, Y., Wu, R. and Clark, M. (2010). Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. Journal of Colloid and Interface Science, 350(2), 538-543.
397. Attah, I. C., Etim, R. K. and Sani, J. E. (2019). Response of oyster shell ash blended cement concrete in sulphuric acid environment. Civil and Environmental Research, 11(4), 62-74.
398. Teara, A. and Ing, D. S. (2020). Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder. Physics and Chemistry of the Earth, Parts a/b/c, 120, 102942.
399. Food and Agricultural Organization (FAO), FAOSTAT: Retrieved April 25, 2024, from http://fao.org/faostat/en/#data/QC
400. Obeng, G. Y., Amoah, D. Y., Opoku, R., Sekyere, C. K., Adjei, E. A. and Mensah, E. (2020). Coconut wastes as bioresource for sustainable energy: Quantifying wastes, calorific values and emissions in Ghana. Energies, 13(9), 2178.
401. Mo, K. H., Chin, T. S., Alengaram, U. J. and Jumaat, M. Z. (2016). Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres. Journal of Cleaner Production, 133, 414-426.
402. Bari, H., Salam, M. A. and Safiuddin, M. (2021). Fresh and hardened properties of brick aggregate concrete including coconut shell as a partial replacement of coarse aggregate. Construction and Building Materials, 297, 123745.
403. Sekar, A. and Kandasamy, G. (2019). Study on durability properties of coconut shell concrete with coconut fiber. Buildings, 9(5), 107.
404. Gunasekaran, K., Kumar, P. S. and Lakshmipathy, M. (2011). Mechanical and bond properties of coconut shell concrete. Construction and building materials, 25(1), 92-98.
405. Liu, H., Li, Q. and Ni, S. (2022). Assessment of the engineering properties of biomass recycled aggregate concrete developed from coconut shells. Construction and Building Materials, 342, 128015.
406. Alengaram, U. J., Al Muhit, B. A. and bin Jumaat, M. Z. (2013). Utilization of oil palm kernel shell as lightweight aggregate in concrete-A review. Construction and Building Materials, 38, 161-172.
407. Ting, T. Z. H., Rahman, M. E. and Lau, H. H. (2020). Sustainable lightweight self-compacting concrete using oil palm shell and fly ash. Construction and Building Materials, 264, 120590.
408. Sujatha, A. and Balakrishnan, S. D. (2023). Properties of high strength lightweight concrete incorporating crushed coconut shells as coarse aggregate. Materials Today: Proceedings.
409. Zhang, Z., Omine, K., Li, C., Shi, S. and Oye, F. S. (2022). Improvement effects of treating with calcined oyster shell and carbonized cow dung compost on clay with high water content. Case Studies in Construction Materials, 17, e01654.
410. Mo, K. H., Mohd Anor, F. A., Alengaram, U. J., Jumaat, M. Z. and Rao, K. J. (2018). Properties of metakaolin-blended oil palm shell lightweight concrete. European Journal of Environmental and Civil Engineering, 22(7), 852-868.
411. Bedarf, P., Dutto, A., Zanini, M. and Dillenburger, B. (2021). Foam 3D printing for construction: A review of applications, materials, and processes. Automation in Construction, 130, 103861.
412. Adaloudis, M. and Bonnin Roca, J. (2021). Sustainability tradeoffs in the adoption of 3D Concrete Printing in the construction industry. Journal of Cleaner Production, 307, 127201.
413. Batikha, M., Jotangia, R., Baaj, M.Y. and Mousleh, I. (2022). 3D concrete printing for sustainable and economical construction: A comparative study. Automation in Construction, 134, 104087.
414. Rehman, A. U. and Kim, J. H. (2021). 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials, 14(14), 3800.
415. Colyn, M., van Zijl, G. and Babafemi, A. J. (2024). Fresh and strength properties of 3D printable concrete mixtures utilising a high volume of sustainable alternative binders. Construction and Building Materials, 419, 135474.
416. Tran, M.V., Cu,Y.T.H. and Le, C.V.H. (2021). Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing. Journal of Building Engineering, 44, 103400.
417. Liu, X., Li, Q. and Li, J. (2022). Shrinkage and mechanical properties optimization of spray-based 3D printed concrete by PVA fiber. Materials Letters, 319, 132253.
418. Zhu, B., Nematollahi, B., Pan, J., Zhang, Y., Zhou, Z. and Zhang, Y. (2021). 3D concrete printing of permanent formwork for concrete column construction. Cement and Concrete Composites, 121, 104039.
419. Huang, X., Yang, W., Song, F. and Zou, J. (2022). Study on the mechanical properties of 3D printing concrete layers and the mechanism of influence of printing parameters. Construction and Building Materials, 335, 127496.
420. Yang, K., Wu, C., Liu, Z., Wang, H. and Ren, Q. (2022). Mechanical anisotropy of ultra-high performance fibre-reinforced concrete for 3D printing. Cement and Concrete Composites, 125, 104310.
421. Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H. and Sanjayan, J. (2020) Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials, 257, 119546.
422. Bhattacherjee, S., Basavaraj, A. S., Rahul, A. V., Santhanam, M., Gettu, R., Panda, B. ... Mechtcherine, V. (2021). Sustainable materials for 3D concrete printing. Cement and Concrete Composites, 122, 104156.
423. Han, Y., Yang, Z., Ding, T. and Xiao, J. (2020). Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete. Journal of Cleaner Production, 278, 123884.
424. Cicione, A., Kruger, J., Walls, R. S. and Van Zijl, G. (2021). An experimental study of the behavior of 3D printed concrete at elevated temperatures. Fire Safety Journal, 120, 103075.
425. Tinoco, M. P., de Mendonca, E. M., Fernandez, L. I. C., Caldas, L. R., Reales, O. A. M. and Toledo Filho, R. D. (2022). Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review. Journal of Building Engineering, 52, 104456.
426. Duan, Z., Li, L., Yao, Q., Zou, S., Singh, A. and Yang, H. (2022). Effect of metakaolin on the fresh and hardened properties of 3D printed cementitious composite. Construction and Building Materials, 350, 128808.
427. Barbosa, M. S., dos Anjos, M. A., Cabral, K. C. and Dias, L. S. (2022). Development of composites for 3D printing with reduced cement consumption. Construction and Building Materials, 341, 127775.
428. Yang, H. and Che, Y. (2022). Recycling of aggregate micro fines as a partial replacement for fly ash in 3D printing cementitious materials. Construction and Building Materials, 321, 126372.
429. De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H. and Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291.
430. Kakali, G., Tsivilis, S., Aggeli, E. and Bati, M. (2000). Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cement and concrete Research, 30(7), 1073-1077.
431. Ma, G., Li, Z. and Wang, L. (2018). Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Construction and Building Materials, 162, 613-627.
432. Skibicki, S., Pu?torak, M., Kaszy?ska, M., Hoffmann, M., Ekiert, E. and Sibera, D. (2022). The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar. Construction and Building Materials, 335, 127443.
433. Zou, S., Xiao, J., Duan, Z., Ding, T. and Hou, S. (2021). On rheology of mortar with recycled fine aggregate for 3D printing. Construction and Building Materials, 311, 125312.
434. Christen, H., van Zijl, G. and de Villiers, W. (2022). The incorporation of recycled brick aggregate in 3D printed concrete. Cleaner Materials, 4, 100090.
435. Ting, G. H. A., Tay, Y. W. D. and Tan, M. J. (2021). Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing. Journal of Cleaner Production, 300, 126919.
436. Sasikumar, A., Balasubramanian, D., Kumaran, M. S. and Govindaraj, V. (2023). Effect of coarse aggregate content on the rheological and buildability properties of 3D printable concrete. Construction and Building Materials, 392, 131859.
437. Mitschka, P. (1982). Simple conversion of Brookfield RVT readings into viscosity functions. Rheologica Acta, 21, 207-209.
438. Qian, Y. and Kawashima, S. (2018). Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cement and Concrete Composites, 86, 288 296.
439. 李銘育,(2021),「紙漿污泥焚化爐飛灰資源化應用作為CLSM細粒料之可行性研究」,碩士論文,國立中央大學。
440. 陶羿?,(2021),「晶相與非晶相微細飛灰對水泥基質材料之特性評估」,碩士論文,國立宜蘭大學。
441. Nodehi, M., Ozbakkaloglu, T. and Gholampour, A. (2022). Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review. Automation in Construction, 138, 104215.
442. Sawell, S. E., Constable, T. W. and Klicius, R. (1989). The national incinerator testing and evaluation program: Characterization of residues from a modular municipal waste incinerator with line-based air pollution control.
443. Rashid, R. A. and Frantz, G. C. (1992). MSW incinerator ash as aggregate in concrete and masonry. Journal of Materials in Civil Engineering, 4(4), 353-368.
444. Pera, J., Coutaz, L., Ambroise, J. and Chababbet, M. (1997). Use of incinerator bottom ash in concrete. Cement and Concrete Research, 27(1), 1-5.
445. Ahari, R. S., Erdem, T. K. and Ramyar, K. (2015). Time-dependent rheological characteristics of self-consolidating concrete containing various mineral admixtures. Construction and Building Materials, 88, 134-142.
446. Paiva, H., Velosa, A., Cachim, P. and Ferreira, V. M. (2012). Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cement and Concrete Research, 42(4), 607-612.
447. Ahari, R. S., Erdem, T. K. and Ramyar, K. (2015). Time-dependent rheological characteristics of self-consolidating concrete containing various mineral admixtures. Construction and Building Materials, 88, 134-142.
448. Duan, Z., Li, L., Yao, Q., Zou, S., Singh, A. and Yang, H. (2022). Effect of metakaolin on the fresh and hardened properties of 3D printed cementitious composite. Construction and Building Materials, 350, 128808.
449. Zhan, P. M., He, Z. H., Ma, Z. M., Liang, C. F., Zhang, X. X., Abreham, A. A. and Shi, J. Y. (2020). Utilization of nano-metakaolin in concrete: A review. Journal of building engineering, 30, 101259.
450. Lin, W. T. (2020). Reactive ultra-fine fly ash as an additive for cement-based materials. Materials Today Communications, 25, 101466.
451. Cai, R., Tian, Z., Ye, H., He, Z. and Tang, S. (2021). The role of metakaolin in pore structure evolution of Portland cement pastes revealed by an impedance approach. Cement and Concrete Composites, 119, 103999.
452. Maes, M. and De Belie, N. (2014). Resistance of concrete and mortar against combined attack of chloride and sodium sulphate. Cement and Concrete Composites, 53, 59-72.
453. Chen, K., Lin, W. T., Liu, Q., Chen, B. and Tam, V. W. (2022). Micro-characterizations and geopolymerization mechanism of ternary cementless composite with reactive ultra-fine fly ash, red mud and recycled powder. Construction and Building Materials, 343, 128091.
454. Jalal, M., Fathi, M. and Farzad, M. (2013). RETRACTED: Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete. Mechanics of Materials, 61, 11-27.
455. Cherian, C. and Siddiqua, S. (2019). Pulp and paper mill fly ash: A review. Sustainability, 11(16), 4394.
456. Wan, H., Shui, Z. and Lin, Z. (2004). Analysis of geometric characteristics of GGBS particles and their influences on cement properties. Cement and concrete research, 34(1), 133-137.
457. Zhang, C., Wang, J., Zhang, X., Hou, J., Huang, J., Feng, S., ... Duan, G. (2024). Influence of limestone powder on water film thickness and plastic viscosity of UHPC. Case Studies in Construction Materials, 20, e03036.
458. Lv, X., Yang, L., Wang, F., Li, J. and Xie, Z. (2023). Hydration and microstructure of ternary high-ferrite Portland cement blends incorporating a large amount of limestone powder and fly ash. Construction and Building Materials, 372, 130684.
459. Nochaiya, T., Wongkeo, W. and Chaipanich, A. (2010). Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete. Fuel, 89(3), 768-774.
460. De Silva, P. S. and Glasser, F. P. (1990). Hydration of cements based on metakaolin: thermochemistry. Advances in Cement Research, 3(12), 167-177.
461. Ambroise, J., Murat, M. and Pera, J. (1985). Hydration reaction and hardening of calcined clays and related minerals. IV. Experimental conditions for strength improvement on metakaolinite minicylinders. Cement and Concrete Research, 15(1), 83-88.
462. Ma, X., He, T., Xu, Y., Yang, R. and Sun, Y. (2022). Hydration reaction and compressive strength of small amount of silica fume on cement-fly ash matrix. Case Studies in Construction Materials, 16, e00989.
463. Xiao, S., Cheng, H., Que, Z., Liu, T. and Zou, D. (2024). Enhancing marine anti-washout concrete: Optimal silica fume usage for improved compressive strength and abrasion resistance. Construction and Building Materials, 428, 136262.
464. Fares, G., Al-Negheimish, A., Alhozaimy, A. M., and Khan, M. I. (2022). Polycarboxylate superplasticizer and viscosity modifying agent: Mode of addition and its effect on cement paste rheology using image analysis. Journal of Building Engineering, 48, 103946.
465. Ma, B., Peng, Y., Tan, H., Jian, S., Zhi, Z., Guo, Y., ... and He, X. (2018). Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer. Construction and Building Materials, 160, 341-350.
466. Cadix, Arnaud, and Simon James. Cementing additives. Fluid chemistry, drilling and completion. Gulf Professional Publishing, 2022. 187-254.
467. Khayat, K. H., and N. Mikanovic. Viscosity-enhancing admixtures and the rheology of concrete. Understanding the rheology of concrete. Woodhead Publishing, 2012. 209-228.
468. Chen, J., Gao, N., Wu, J., Shan, G., Qiao, M., Ran, Q. and Liu, J. (2020). Effects of the charge density of anionic copolymers on the properties of fresh cement pastes. Construction and Building Materials, 263, 120207.
469. Kawashima, S., Wang, K., Ferron, R. D., Kim, J. H., Tregger, N. and Shah, S. (2021). A review of the effect of nanoclays on the fresh and hardened properties of cement-based materials. Cement and Concrete Research, 147, 106502.
470. Douba, A. and Kawashima, S. (2021). Use of nanoclays and methylcellulose to tailor rheology for three-dimensional concrete printing. ACI Materials Journal, 118(6), 275-289.
471. Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K. and Le, T. A. (2022). Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939.
472. Bessaies-Bey, H., Khayat, K. H., Palacios, M., Schmidt, W. and Roussel, N. (2022). Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology. Cement and Concrete Research, 152, 106646.
473. Gelardi, G., and R. J. Flatt. Working mechanisms of water reducers and superplasticizers. Science and technology of concrete admixtures. Woodhead publishing, 2016. 257-278.
474. Nicia, D., Jakob, C., Jansen, D., Ivanov, D., Mazanec, O., Dengler, J., ... and Lowke, D. (2023). Thixotropy of superplasticized cement pastes–Underlying mechanisms considering the polycarboxylate molecular structure, interparticle interactions and hydration kinetics. Cement and Concrete Research, 173, 107289.
475. Pourchez, J., Peschard, A., Grosseau, P., Guyonnet, R., Guilhot, B. and Vallee, F. (2006). HPMC and HEMC influence on cement hydration. Cement and Concrete Research, 36(2), 288-294.
476. Zhang, Z. and Yan, P. (2017). Hydration kinetics of the epoxy resin-modified cement at different temperatures. Construction and Building Materials, 150, 287-294.
477. Tian, Y., Jin, X. Y., Jin, N. G., Zhao, R., Li, Z. J. and Ma, H. Y. (2013). Research on the microstructure formation of polyacrylate latex modified mortars. Construction and Building Materials, 47, 1381-1394.
478. Zheng, Z., Li, Y., Ma, X., Zhu, X. and Li, S. (2019). High density and high strength cement-based mortar by modification with epoxy resin emulsion. Construction and Building Materials, 197, 319-330.
479. Peng, Y., Zeng, Q., Xu, S., Zhao, G., Wang, P. and Liu, X. (2020). BSE?IA reveals retardation mechanisms of polymer powders on cement hydration. Journal of the American Ceramic Society, 103(5), 3373-3389.
480. Kong, X., Emmerling, S., Pakusch, J., Rueckel, M. and Nieberle, J. (2015). Retardation effect of styrene-acrylate copolymer latexes on cement hydration. Cement and Concrete Research, 75, 23-41.
481. Cheung, J., Jeknavorian, A., Roberts, L. and Silva, D. (2011). Impact of admixtures on the hydration kinetics of Portland cement. Cement and concrete research, 41(12), 1289-1309.
482. Fan, L., Xu, F., Wang, S., Yu, Y., Zhang, J. and Guo, J. (2023). A review on the modification mechanism of polymer on cement-based materials. Journal of Materials Research and Technology.
483. Zhang, Y. R., Kong, X. M., Lu, Z. B., Lu, Z. C. and Hou, S. S. (2015). Effects of the charge characteristics of polycarboxylate superplasticizers on the adsorption and the retardation in cement pastes. Cement and Concrete Research, 67, 184-196.
484. He, Y., Zhang, X. and Hooton, R. D. (2017). Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste. Construction and Building Materials, 132, 112-123.
485. Plank, J. and Sachsenhauser, B. (2009). Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution. Cement and Concrete Research, 39(1), 1-5.
486. Mollah, M. Y. A., Adams, W. J., Schennach, R. and Cocke, D. L. (2000). A review of cement–superplasticizer interactions and their models. Advances in Cement Research, 12(4), 153-161.
487. Wang, J., Yu, D., Zeng, C., Ji, X., Ye, L., Zhou, P. and Zhao, S. (2024). Effect of Textile Layers and Hydroxypropyl Methylcellulose on Flexural Behavior of TRLC Thin Plates. Buildings, 14(4), 924.
488. Yan, X., Wang, X., Sun, C., Xin, M. and He, J. (2023). Performance Analysis and Admixture Optimization of GBFS-HPMC/Fiber Pervious Concrete. Materials, 16(19), 6455.
489. Zhang, K., Yin, W., Chen, X., Li, H., Cao, M. and Zhu, S. (2022). The feasibility of hydroxypropyl methylcellulose as an admixture for porous vegetarian concrete using coarse recycled aggregates. Buildings, 12(5), 676.
490. Figueiredo, S. C., Copuro?lu, O. and Schlangen, E. (2019). Effect of viscosity modifier admixture on Portland cement paste hydration and microstructure. Construction and Building Materials, 212, 818-840.
491. Gu, X., Li, X., Zhang, W., Gao, Y., Kong, Y., Liu, J. and Zhang, X. (2021). Effects of HPMC on workability and mechanical properties of concrete using iron tailings as aggregates. Materials, 14(21), 6451.
492. Qu, X. and Zhao, X. (2017). Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete–A review. Construction and Building Materials, 135, 505-516.
493. Gu, X., Wang, S., Liu, J., Wang, H., Xu, X., Wang, Q. and Zhu, Z. (2023). Effect of hydroxypropyl methyl cellulose (HPMC) as foam stabilizer on the workability and pore structure of iron tailings sand autoclaved aerated concrete. Construction and Building Materials, 376, 130979.
494. Chow, R. K., Yip, S. W. and Kwan, A. K. (2013). Processing crushed rock fine to produce manufactured sand for improving overall performance of concrete. HKIE Transactions, 20(4), 240-249.
495. Uyguno?lu, T. and Topcu, I. B. (2011). Influence of aggregate type on workability of self-consolidating lightweight concrete. Magazine of Concrete Research, 63(1), 1-12.
496. Guneyisi, E., Geso?lu, M., Altan, I. and Oz, H. O. (2015). Utilization of cold bonded fly ash lightweight fine aggregates as a partial substitution of natural fine aggregate in self-compacting mortars. Construction and Building Materials, 74, 9-16.
497. Guneyisi, E., Gesoglu, M., Ghanim, H., ?pek, S. and Taha, I. (2016). Influence of the artificial lightweight aggregate on fresh properties and compressive strength of the self-compacting mortars. Construction and Building Materials, 116, 151-158.
498. Shaikuthali, S. A., Mannan, M. A., Dawood, E. T., Teo, D. C. L., Ahmadi, R. and Ismail, I. (2019). Workability and compressive strength properties of normal weight concrete using high dosage of fly ash as cement replacement. Journal of Building Pathology and Rehabilitation, 4, 1-7.
499. Hussain, F., Kaur, I. and Hussain, A. (2020). Reviewing the influence of GGBF on concrete properties. Materials Today: Proceedings, 32, 997-1004.
500. Matiushin, E., Sizyakov, I., Shvetsova, V. and Soloviev, V. (2024). The Properties and Behavior of Ultra-High-Performance Concrete: The Effects of Aggregate Volume Content and Particle Size. Buildings, 14(9), 2891.
501. Bhowmick, A. and Ghosh, S. (2012). Effect of synthesizing parameters on workability and compressive strength of fly ash based geopolymer mortar. International Journal of Civil & Structural Engineering, 3(1), 168-177.
502. K?l?c, A., Ati?, C. D., Teymen, A., Karahan, O. K. A. N., Ozcan, F., Bilim, C. and Ozdemir, M. E. T. I. N. (2008). The influence of aggregate type on the strength and abrasion resistance of high strength concrete. Cement and Concrete Composites, 30(4), 290-296.
503. Lam, N. N. (2020). A study on using crushed sand to replace natural sand in high-strength self-compacting concrete towards sustainable development in construction. IOP Conference Series: Earth and Environmental Science, 505(1), 012003.
504. Mazloom, M., Ramezanianpour, A. A. and Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and concrete composites, 26(4), 347-357.
505. Sun, J., Shen, X., Tan, G. and Tanner, J. E. (2019). Compressive strength and hydration characteristics of high-volume fly ash concrete prepared from fly ash. Journal of Thermal Analysis and Calorimetry, 136, 565-580.
506. Shi, Y., Long, G., Zen, X., Xie, Y. and Shang, T. (2021). Design of binder system of eco-efficient UHPC based on physical packing and chemical effect optimization. Construction and Building Materials, 274, 121382.
507. Fujiwara, T. (2008). Effect of aggregate on drying shrinkage of concrete. Journal of Advanced Concrete Technology, 6(1), 31-44.
508. Hong, M., Lei, D., Zhu, F., Bai, P. and He, J. (2023). Experimental research on aggregate restrained shrinkage and cracking of early-age cement paste. Cement and Concrete Research, 172, 107246.
509. Zhang, D., Zhou, J., Sun, Q., Ji, T., Liang, Y., Weng, Y., ... Wu, X. (2024). Mechanical properties and early-age shrinkage of ultra-high performance concrete mortar with recycled fine aggregate. Journal of Building Engineering, 98, 111254.
510. Al-Attar, T. S. (2008). Effect of coarse aggregate characteristics on drying shrinkage of concrete. Engineering and Technology Journal, 26(2), 146-153
511. Rao, G. A. (2001). Long-term drying shrinkage of mortar—Influence of silica fume and size of fine aggregate. Cement and concrete research, 31(2), 171-175.
512. Li, Y., Bao, J., & Guo, Y. (2010). Construction and Building Materials, 24(10), 1855-1860.
513. Hamada, H. M., Abed, F., Katman, H. Y. B., Humada, A. M., Al Jawahery, M. S., Majdi, A., ... Thomas, B. S. (2023). Effect of silica fume on the properties of sustainable cement concrete. Journal of Materials Research and Technology, 24, 8887-8908.
514. Mazloom, M., Ramezanianpour, A. A. and Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and concrete composites, 26(4), 347-357.
515. Choudhary, R., Gupta, R., Alomayri, T., Jain, A. and Nagar, R. (2021). Permeation, corrosion, and drying shrinkage assessment of self-compacting high strength concrete comprising waste marble slurry and fly ash, with silica fume. Structures, 33, 971-985.
516. Li, Q. and Zhang, Q. (2019). Experimental study on the compressive strength and shrinkage of concrete containing fly ash and ground granulated blast?furnace slag. Structural Concrete, 20(5), 1551-1560.
517. Lei, Z., Li, Q., Zhou, Y. and Yin, B. (2024). Mechanical performance and reinforcing mechanisms of foamed concrete strengthened by carbon fibers. Journal of Building Engineering, 97, 110765.
518. Han, B., Zhang, L., Zhang, C., Wang, Y., Yu, X. and Ou, J. (2016). Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials. Construction and Building materials, 125, 479-489.
519. Wan, L., Pan, R. and Xu, J. (2019). Mechanical properties and microstructure of CaSO4 whisker reinforced cement mortar. Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(5), 1170-1176.
520. Ma, F., Chen, C. and Wang, Y. (2021). Mechanical behavior of calcium sulfate whisker-reinforced paraffin/gypsum composites. Construction and Building Materials, 305, 124795.
521. Zhang, J., Jin, J., Guo, B., Wang, J., Fu, C. and Zhang, Y. (2023). Effect of mixed basalt fiber and calcium sulfate whisker on chloride permeability of concrete. Journal of Building Engineering, 64, 105633.
522. Liang, N., Dai, J., Liu, X. and Zhong, Z. (2019). Experimental study on the fracture toughness of concrete reinforced with multi-size polypropylene fibres. Magazine of Concrete Research, 71(9), 468-475.
523. Wang, W., Shen, A., Lyu, Z., He, Z. and Nguyen, K. T. (2021). Fresh and rheological characteristics of fiber reinforced concrete——A review. Construction and Building Materials, 296, 123734.
524. Liu, A., Kong, D., Jiang, J., Wang, L., Liu, C. and He, R. (2024). Mechanical properties and microscopic mechanism of basalt fiber-reinforced red mud concrete. Construction and Building Materials, 416, 135155.
525. Lin, J. X., Chen, G., Pan, H. S., Wang, Y. C., Guo, Y. C. and Jiang, Z. X. (2023). Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics. Composite Structures, 323, 117437.
526. Chen, Z. Y. and Yang, J. (2020). Experimental study on dynamic splitting characteristics of carbon fiber reinforced concrete. Materials, 14(1), 94.
527. Helmi, M. and Alraimi, A. A. Q. (2024). Effects of Carbon Fiber on Mechanical Properties of Reactive Powder Concrete. In Journal of the Civil Engineering Forum, 10(3), 239-248.
528. Gultekin, A., Beycio?lu, A., Arslan, M. E., Serdar, A. H., Dobiszewska, M. and Ramyar, K. (2022). Fresh properties and fracture energy of basalt and glass fiber–reinforced self-compacting concrete. Journal of Materials in Civil Engineering, 34(1), 04021406.
529. Shoaei, P., Kjoniksen, A. L., Pamies, R. and Pilehvar, S. (2024). Characterization of 3D-Printable Geopolymer Mortars: Effect of Binder Composition and Basalt Fiber Reinforcement. Case Studies in Construction Materials, e03335.
530. Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., Liu, Z. and Su, J. (2021). The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Construction and building materials, 282, 122706.
531. Garces, P., Zornoza, E., Alcocel, E. G., Galao, O. and Andion, L. G. (2012). Mechanical properties and corrosion of CAC mortars with carbon fibers. Construction and Building Materials, 34, 91-96.
532. Khan, M., Cao, M. and Ali, M. (2018). Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Construction and Building Materials, 192, 742-753.
533. Guo, H., Wang, H., Li, H., Wei, L. and Li, Y. (2023). Effect of whisker toughening on the dynamic properties of hybrid fiber concrete. Case Studies in Construction Materials, 19, e02517.
534. Kruger, J., du Plessis, A. and van Zijl, G. (2021). An investigation into the porosity of extrusion-based 3D printed concrete. Additive Manufacturing, 37, 101740.
535. Ezeldin, A. S. and Balaguru, P. N. (1992). Normal-and high-strength fiber-reinforced concrete under compression. Journal of materials in civil engineering, 4(4), 415-429.
536. Stahli, P., Custer, R. and van Mier, J. G. M. (2007). On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Materials and Structures, 41(1), 189-196.
537. Zhu, B., Pan, J., Nematollahi, B., Zhou, Z., Zhang, Y. and Sanjayan, J. (2019). Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Materials & Design, 181, 108088.
538. Weng, Y., Li, M., Liu, Z., Lao, W., Lu, B., Zhang, D. and Tan, M. J. (2019). Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures. Virtual and Physical Prototyping, 14(3), 284-292.
539. Liu, B., Liu, X., Li, G., Geng, S., Li, Z., Weng, Y. and Qian, K. (2022). Study on anisotropy of 3D printing PVA fiber reinforced concrete using destructive and non-destructive testing methods. Case Studies in Construction Materials, 17, e01519.
540. Singh, A., Liu, Q., Xiao, J. and Lyu, Q. (2022). Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction. Construction and Building Materials, 323, 126616.
541. Liu, C., Zhang, R., Liu, H., He, C., Wang, Y., Wu, Y., ... Zuo, F. (2022). Analysis of the mechanical performance and damage mechanism for 3D printed concrete based on pore structure. Construction and Building Materials, 314, 125572.
542. Yu, Q., Zhu, B., Li, X., Meng, L., Cai, J., Zhang, Y. and Pan, J. (2023). Investigation of the rheological and mechanical properties of 3D printed eco-friendly concrete with steel slag. Journal of Building Engineering, 72, 106621.
543. Ye, J., Cui, C., Yu, J., Yu, K. and Dong, F. (2021). Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Construction and Building Materials, 281, 122586.
544. Ma, W., Wang, G., Zhou, Y., Xu, Q. and Dai, Y. (2024). Polyacrylonitrile fiber reinforced 3D printed concrete: Effects of fiber length and content. Journal of Building Engineering, 97, 110869.
545. 環境保護署:產品碳足跡資訊網,Retrieved December 18, 2024, from https://cfp-calculate.tw/cfpc/WebPage/Index.aspx
546. Sharma, R. and Khan, R. A. (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of cleaner production, 151, 179-192.
547. Turner, L. K. and Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and building materials, 43, 125-130.
548. 工程技術顧問商業同業公會,(2012),「研訂公共工程計畫相關審議基準及綠色減碳指標計算規則」委託研究案 減碳規則篇,行政院公共工程委員會專案研究計畫,研究報告1010330。
549. 寧夏回族自治區地方標準,(2023),「混凝土碳排放計算方法及評價標準」,DB 64/T 1954-2023,寧夏回族自治區市場監督管理廳。
550. Yang, Y., Wu, C., Liu, Z. and Zhang, H. (2022). 3D-printing ultra-high performance fiber-reinforced concrete under triaxial confining loads. Additive Manufacturing, 50, 102568.
551. Du, L., Zhou, J., Lai, J., Wu, K., Yin, X. and He, Y. (2023). Effect of pore structure on durability and mechanical performance of 3D printed concrete. Construction and Building Materials, 400, 132581.
552. Zhao, J., Wang, A., Zhang, Z., Dai, J. G., Liu, K., Wang, Y., ... Sun, D. (2024). Hybrid fiber reinforced ultra-high performance coal gangue geopolymer concrete (UHPGC): Mechanical properties, enhancement mechanism, carbon emission and economic analysis. Journal of Building Engineering, 96, 110428.
553. Zhang, C., Jia, Z., Wang, X., Jia, L., Deng, Z., Wang, Z., ... Mechtcherine, V. (2022). A two-phase design strategy based on the composite of mortar and coarse aggregate for 3D printable concrete with coarse aggregate. Journal of Building Engineering, 54, 104672.
554. Wang, Q., Yang, W., Wang, L., Zhang, D., Li, Z. and Ma, G. (2024). Flexural performance of the integrated steel truss reinforced 3D printed concrete beams: Experimental and numerical analysis. Journal of Building Engineering, 97, 110794.
555. 李銘智,陳建同,(2023),「鋁合金模板於混凝土工程之應用與環保效益」,營建知訊,第491期,第39-56頁。
556. 內政部,(2023),「建築物混凝土結構設計規範」,台內營字第1120809921號。
557. Daungwilailuk, T., Pheinsusom, P. and Pansuk, W. (2021). Uniaxial load testing of large-scale 3D-printed concrete wall and finite-element model analysis. Construction and Building Materials, 275, 122039.
558. Fernandez, L. I. C., Caldas, L. R. and Reales, O. A. M. (2023). Environmental evaluation of 3D printed concrete walls considering the life cycle perspective in the context of social housing. Journal of Building Engineering, 74, 106915.
559. Mohammad, M., Masad, E. and Al-Ghamdi, S. G. (2020). 3D concrete printing sustainability: a comparative life cycle assessment of four construction method scenarios. Buildings, 10(12), 245.
560. International Organization for Standardization. (2006). ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines. Geneva, Switzerland: ISO.
561. International Organization for Standardization. (2012). ISO 14045: Environmental management – Eco-efficiency assessment of product systems – Principles, requirements and guidelines. Geneva, Switzerland: ISO.
562. 賈鋮修,(2021),「基於生命週期評價的3D打印建築結構碳排放量化分析」,碩士論文,浙江大學。
563. 韓液,(2023),「3D打印混凝土結構物化階段的碳排放測算研究」,碩士論文,內蒙古科技大學。
564. 吳孟珊,詹為巽,(2024),「木材產品碳足跡」,林業研究專訊,第31期,第4卷,第57-62頁。
565. 焦雙健,(2012),「一種全壽命週期公路碳計量方法及其應用」,CN102567619A,中國國家知識產權局。
指導教授 王韡蒨(Wei-Chien Wang) 審核日期 2025-3-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明