參考文獻 |
1-6 References
[1] Truby, R. L.; Lewis, J. A. Printing Soft Matter in Three Dimensions. Nature 2016, 540 (7633), 371-378.
[2] Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117 (15), 10212-10290.
[3] agliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct Ink Writing of Energy Materials. Materials Advances 2021, 2 (2), 540-563.
[4] Saadi, M. A. S. R.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34 (28), 2108855.
[5] Lewis, J. A.; Gratson, G. M. Direct Writing in Three Dimensions. Materials Today 2004, 7 (7), 32-39.
(6) Li, J.; Wu, C.; Chu, P. K.; Gelinsky, M. 3D Printing of Hydrogels: Rational Design Strategies and Emerging Biomedical Applications. Mater. Sci. Eng.: R: Rep. 2020, 140, 100543.
[7] Gong, J.; Schuurmans, C. C. L.; van Genderen, A. M.; Cao, X.; Li, W.; Cheng, F.; He, J. J.; López, A.; Huerta, V.; Manríquez, J.; Li, R.; Li, H.; Delavaux, C.; Sebastian, S.; Capendale, P. E.; Wang, H.; Xie, J.; Yu, M.; Masereeuw, R.; Vermonden, T.; Zhang, Y. S. Complexation-Induced Resolution Enhancement of 3D-Printed Hydrogel Constructs. Nat. Commun. 2020, 11 (1), 1267.
[8] Placone, J. K.; Engler, A. J. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv. Healthc. Mater. 2018, 7 (8), 1701161.
[9] Cheng, Y.; Chan, K. H.; Wang, X.-Q.; Ding, T.; Li, T.; Lu, X.; Ho, G. W. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS Nano 2019, 13 (11), 13176-13184.
[10] Nulwala, H.; Mirjafari, A.; Zhou, X. Ionic Liquids and Poly(ionic liquid)s for 3D Printing – A Focused Mini-Review. Eur. Polym. J. 2018, 108, 390-398.
[11] Luque, G. C.; Picchio, M. L.; Martins, A. P. S.; Dominguez-Alfaro, A.; Ramos, N.; del Agua, I.; Marchiori, B.; Mecerreyes, D.; Minari, R. J.; Tomé, L. C. 3D Printable and Biocompatible Iongels for Body Sensor Applications. Adv. Electron. Mater. 2021, 7 (8), 2100178.
[12] Engel, K. E.; Kilmartin, P. A.; Diegel, O. Recent Advances in The 3D Printing of Ionic Electroactive Polymers and Core Ionomeric Materials. Polym. Chem. 2022, 13 (4), 456-473.
[13] MacFarlane, D. R.; Tachikawa, N.; Forsyth, M.; Pringle, J. M.; Howlett, P. C.; Elliott, G. D.; Davis, J. H.; Watanabe, M.; Simon, P.; Angell, C. A. Energy Applications of Ionic Liquids. Energy Environ. Sci. 2014, 7 (1), 232-250.
[14] Mecerreyes, D. Polymeric Ionic Liquids: Broadening The Properties and Applications of Polyelectrolytes. Prog. Polym. Sci. 2011, 36 (12), 1629-1648.
[15] Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121 (3), 1232-1285.
[16] Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060-11082.
[17] Garralaga, M. P.; Lomba, L.; Leal-Duaso, A.; Gracia-Barberán, S.; Pires, E.; Giner, B. Ecotoxicological Study of Bio-based Deep Eutectic Solvents Formed by Glycerol Derivatives in Two Aquatic Biomodels. Green Chem. 2022, 24 (13), 5228-5241.
[18] Li, X.; Liu, J.; Guo, Q.; Zhang, X.; Tian, M. Polymerizable Deep Eutectic Solvent-Based Skin-Like Elastomers with Dynamic Schemochrome and Self-Healing Ability. Small 2022, 18 (19), 2201012.
[19] Li, R. a.; Fan, T.; Chen, G.; Zhang, K.; Su, B.; Tian, J.; He, M. Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chem. Mater. 2020, 32 (2), 874-881.
[20] Li, R. a.; Chen, G.; He, M.; Tian, J.; Su, B. Patternable Transparent and Conductive Elastomers towards Flexible Tactile/Strain Sensors. J. Mater. Chem. C 2017, 5 (33), 8475-8481.
[21] Li, R. a.; Fan, T.; Chen, G.; Xie, H.; Su, B.; He, M. Highly Transparent, Self-healing Conductive Elastomers Enabled by Synergistic Hydrogen Bonding Interactions. J. Chem. Eng. 2020, 393, 124685.
[22] Li, R. a.; Zhang, K.; Chen, G.; Su, B.; He, M. Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions. Chem. Mater. 2021, 33 (13), 5189-5196.
[23] Li, G.; Deng, Z.; Cai, M.; Huang, K.; Guo, M.; Zhang, P.; Hou, X.; Zhang, Y.; Wang, Y.; Wang, Y.; et al. A Stretchable and Adhesive Ionic Conductor Based on Polyacrylic Acid and Deep Eutectic Solvents. npj Flex. Electron. 2021, 5 (1), 23.
[24] Fan, K.; Wei, W.; Zhang, Z.; Liu, B.; Feng, W.; Ma, Y.; Zhang, X. Highly Stretchable, Self-healing, and Adhesive Polymeric Eutectogel Enabled by Hydrogen-Bond Networks for Wearable Strain Sensor. J. Chem. Eng. 2022, 449, 137878.
[25] Fan, K.; Wang, L.; Wei, W.; Wen, F.; Xu, Y.; Zhang, X.; Guan, X. Multifunctional Self-Healing Eutectogels Induced by Supramolecular Assembly for Smart Conductive Materials, Interface Lubrication and Dye Adsorption. J. Chem. Eng. 2022, 441, 136026.
[26] Ge, G.; Mandal, K.; Haghniaz, R.; Li, M.; Xiao, X.; Carlson, L.; Jucaud, V.; Dokmeci, M. R.; Ho, G. W.; Khademhosseini, A. Deep Eutectic Solvents-Based Ionogels with Ultrafast Gelation and High Adhesion in Harsh Environments. Adv. Funct. Mater. 2023, 33 (9), 2207388.
[27] Lai, C.-W.; Yu, S.-S. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12 (30), 34235-34244.
[28] Pal, S.; Su, Y.-Z.; Chen, Y.-W.; Yu, C.-H.; Kung, C.-W.; Yu, S.-S. 3D Printing of Metal–Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Appl. Mater. Interfaces 2022, 14 (24), 28247-28257.
[29] Cai, L.; Chen, G.; Su, B.; He, M. 3D Printing of Ultra-tough, Self-Healing Transparent Conductive Elastomeric Sensors. J. Chem. Eng. 2021, 426, 130545.
[30] Sheikhi, M.; Rafiemanzelat, F.; Ghodsi, S.; Moroni, L.; Setayeshmehr, M. 3D Printing of Jammed Self-Supporting Microgels with Alternative Mechanism for Shape Fidelity, Crosslinking and Conductivity. Addit. Manuf. 2022, 58, 102997.
[31] Zhu, G.; Zhang, J.; Huang, J.; Yu, X.; Cheng, J.; Shang, Q.; Hu, Y.; Liu, C.; Zhang, M.; Hu, L.; Zhou, Y. Self-Healing, Antibacterial, and 3D-Printable Polymerizable Deep Eutectic Solvents Derived from Tannic Acid. ACS Sustain. Chem. Eng. 2022, 10 (24), 7954-7964.
[32] Su, J.; Li, S.; Chen, Y.; Cui, Y.; He, M. 3D Photoprintable Antistatic Materials with Polymerizable Deep Eutectic Solvents. Ind. Eng. Chem. Res. 2021, 60 (49), 17797-17803.
(33) Highley, C. B.; Song, K. H.; Daly, A. C.; Burdick, J. A. Jammed Microgel Inks for 3D Printing Applications. Adv. Sci. 2019, 6 (1), 1801076.
[34] Song, K.; Compaan, A. M.; Chai, W.; Huang, Y. Injectable Gelatin Microgel-Based Composite Ink for 3D Bioprinting in Air. ACS Appl. Mater. Interfaces 2020, 12 (20), 22453-22466.
[35] Zhao, D.; Liu, Y.; Liu, B.; Chen, Z.; Nian, G.; Qu, S.; Yang, W. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. ACS Appl. Mater. Interfaces 2021, 13 (11), 13714-13723.
[36] Hirsch, M.; Charlet, A.; Amstad, E. 3D Printing of Strong and Tough Double Network Granular Hydrogels. Adv. Funct. Mater. 2021, 31 (5), 2005929.
[37] Funke, W.; Okay, O.; Joos-Müller, B. Microgels-intramolecularly crosslinked macromolecules with a globular structure. Adv. Polym. Sci. 1998, 136, 139−234.
[38] Ketz, R. J.; Prud′homme, R. K.; Graessley, W. W. Rheology of Concentrated Microgel Solutions. Rheol. Acta 1988, 27 (5), 531-539.
[39] Cates, M. E.; Wittmer, J. P.; Bouchaud, J. P.; Claudin, P. Jamming, Force Chains, and Fragile Matter. Phys. Rev. Lett. 1998, 81 (9), 1841-1844.
[40] Liu, A. J.; Nagel, S. R. Jamming is not just cool any more. Nature 1998, 396 (6706), 21-22.
[41] Menut, P.; Seiffert, S.; Sprakel, J.; Weitz, D. A. Does Size Matter? Elasticity of Compressed Suspensions of Colloidal- and Granular-Scale Microgels. Soft Matter 2012, 8 (1), 156-164.
[42] Hu, S.-W.; Sung, P.-J.; Nguyen, T. P.; Sheng, Y.-J.; Tsao, H.-K. UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing. ACS Appl. Mater. Interfaces 2020, 12 (21), 24450-24457.
[43] Qin, H.; Owyeung, R. E.; Sonkusale, S. R.; Panzer, M. J. Highly Stretchable and Nonvolatile Gelatin-Supported Deep Eutectic Solvent Gel Electrolyte-Based Ionic Skins for Strain and Pressure Sensing. J. Mater. Chem. C 2019, 7 (3), 601-608.
[44] Jia, Y.; Sciutto, G.; Botteon, A.; Conti, C.; Focarete, M. L.; Gualandi, C.; Samorì, C.; Prati, S.; Mazzeo, R. Deep Eutectic Solvent and Agar: A New Green Gel to Remove Proteinaceous-Based Varnishes from Paintings. J. Cult. Herit. 2021, 51, 138-144.
[45] Contreras, M. D.; Sanchez, R. Application of a Factorial Design to the Study of the Flow Behavior, Spreadability and Transparency of a Carbopol ETD 2020 gel. Part II. Int. J. Pharm. 2002, 234 (1), 149-157.
[46] Maciel, B. R.; Wang, K.; Müller, M.; Oelschlaeger, C.; Willenbacher, N. Targeted Micro-Phase Separation–A Generic Design Concept to Control the Elasticity of Extrudable Hydrogels. Mater. Des. 2023, 227, 111803.
[47] Jaworski, Z.; Spychaj, T.; Story, A.; Story, G. Carbomer Microgels as Model Yield-Stress Fluids. Rev. Chem. Eng. 2022, 38 (7), 881-919.
[48] Peng, E.; Zhang, D.; Ding, J. Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Adv. Mater. 2018, 30 (47), 1802404.
[49] Kazem, N.; Bartlett, M. D.; Majidi, C. Extreme Toughening of Soft Materials with Liquid Metal. Adv. Mater. 2018, 30 (22), 1706594.
[50] Jiang, Y.; Liu, Z.; Matsuhisa, N.; Qi, D.; Leow, W. R.; Yang, H.; Yu, J.; Chen, G.; Liu, Y.; Wan, C.; et al. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Adv. Mater. 2018, 30 (12), 1706589.
[51] Mao, L.; Pan, T.; Ke, Y.; Yan, Z.; Huang, S.; Guo, D.; Gao, N.; Huang, W.; Yao, G.; Gao, M.; Lin, Y. Configurable Direction Sensitivity of Skin-Mounted Microfluidic Strain Sensor with Auxetic Metamaterial. Lab Chip 2022, 22 (8), 1630-1639.
[52] Wang, Z.; Luan, C.; Liao, G.; Liu, J.; Yao, X.; Fu, J. High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13 (19), 23038-23048.
[53] Lee, Y.-J.; Lim, S.-M.; Yi, S.-M.; Lee, J.-H.; Kang, S.-g.; Choi, G.-M.; Han, H. N.; Sun, J.-Y.; Choi, I.-S.; Joo, Y.-C. Auxetic Elastomers: Mechanically Programmable Meta-Elastomers with An Unusual Poisson’s ratio Overcome the Gauge Limit of A Capacitive Type Strain Sensor. Extreme Mech. Lett. 2019, 31, 100516.
[54] Kapnisi, M.; Mansfield, C.; Marijon, C.; Guex, A. G.; Perbellini, F.; Bardi, I.; Humphrey, E. J.; Puetzer, J. F.; Mawad, D.; Koutsogeorgis, D. C.; Stuckey, D. J.; Terracciano, C. M.; Harding, S. E.; Stevens, M. M. Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Adv. Funct. Mater. 2018, 28 (21), 1800618.
[55] Sun, X.; Zhu, Y.; Zhu, J.; Le, K.; Servati, P.; Jiang, F. Tough and Ultrastretchable Liquid-Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers. Adv. Funct. Mater. 2022, 32 (29), 2202533.
[56] Wang, M.; Lai, Z.; Jin, X.; Sun, T.; Liu, H.; Qi, H. Multifunctional Liquid-Free Ionic Conductive Elastomer Fabricated by Liquid Metal Induced Polymerization. Adv. Funct. Mater. 2021, 31 (32), 2101957.
References of Supporting information
[1] Jiang, Y.; Liu, Z.; Matsuhisa, N.; Qi, D.; Leow, W. R.; Yang, H.; Yu, J.; Chen, G.; Liu, Y.; Wan, C.; et al. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Adv. Mater. 2018, 30 (12), 1706589.
[2] Wang, Z.; Luan, C.; Liao, G.; Liu, J.; Yao, X.; Fu, J. High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13 (19), 23038-23048.
[3] Mao, L.; Pan, T.; Ke, Y.; Yan, Z.; Huang, S.; Guo, D.; Gao, N.; Huang, W.; Yao, G.; Gao, M.; et al. Configurable Direction Sensitivity of Skin-Mounted Microfluidic Strain Sensor with Auxetic Metamaterial. Lab Chip 2022, 22 (8), 1630-1639.
[4] Shintake, J.; Nagai, T.; Ogishima, K. Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures. Front. Robot. AI 2019, 6.
[5] Lee, Y.-J.; Lim, S.-M.; Yi, S.-M.; Lee, J.-H.; Kang, S.-g.; Choi, G.-M.; Han, H. N.; Sun, J.-Y.; Choi, I.-S.; Joo, Y.-C. Auxetic Elastomers: Mechanically Programmable Meta-Elastomers with an Unusual Poisson’s ratio Overcome the Gauge Limit of a Capacitive Type Strain Sensor. Extreme Mech. Lett. 2019, 31, 100516.
[6] Taherkhani, B.; Azizkhani, M. B.; Kadkhodapour, J.; Anaraki, A. P.; Rastgordani, S. Highly Sensitive, Piezoresistive, Silicone/Carbon Fiber-Based Auxetic Sensor for Low Strain Values. Sens. Actuator A Phys. 2020, 305, 111939.
[7] Wong, J.; Gong, A. T.; Defnet, P. A.; Meabe, L.; Beauchamp, B.; Sweet, R. M.; Sardon, H.; Cobb, C. L.; Nelson, A. 3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors. Adv. Mater. Technol. 2019, 4 (9), 1900452.
[8] Lai, C.-W.; Yu, S.-S. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12 (30), 34235-34244.
[9] Pal, S.; Su, Y.-Z.; Chen, Y.-W.; Yu, C.-H.; Kung, C.-W.; Yu, S.-S. 3D Printing of Metal–Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Appl. Mater. Interfaces 2022, 14 (24), 28247-28257.
2-6 References
[1] Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels, Science 356 (6337) (2017) eaaf3627.
[2] C. Yang, Z. Suo, Hydrogel ionotronics, Nat. Rev. Mater. 3 (6) (2018) 125-142.
[3] M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels, Mater. Adv. 3 (21) (2022) 7709-7725.
[4] Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu, J. Wang, Ionic liquid-based gels for biomedical applications, J. Chem. Eng. 452 (2023) 139248.
[5] M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus hydrogels: Advantages, challenges, and applications, Adv. Funct. Mater. 33 (27) (2023) 2301421.
[6] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep eutectic solvents: A review of fundamentals and applications, Chem. Rev. 121 (3) (2021) 1232-1285.
[7] A. Azzouz, M. Hayyan, Potential applications of deep eutectic solvents in nanotechnology: Part II, J. Chem. Eng. 468 (2023) 143563.
[8] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (21) (2014) 11060-11082.
[9] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep eutectic solvents - Solvents for the 21st century, ACS Sustain. Chem. Eng. 2 (5) (2014) 1063-1071.
[10] Q. Zaib, M.J. Eckelman, Y. Yang, D. Kyung, Are deep eutectic solvents really green?: A life-cycle perspective, Green Chem. 24 (20) (2022) 7924-7930.
[11] J. Wang, S. Zhang, Z. Ma, L. Yan, Deep eutectic solvents eutectogels: progress and challenges, Green Chem. Eng. 2(4) (2021) 359-367.
[12] K. Fan, W. Wei, Z. Zhang, B. Liu, W. Feng, Y. Ma, X. Zhang, Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor, J. Chem. Eng. 449 (2022) 137878.
[13] C. Chai, L. Ma, Y. Chu, W. Li, Y. Qian, J. Hao, Extreme-environment-adapted eutectogel mediated by heterostructure for epidermic sensor and underwater communication, J. Colloid Interface Sci. 638 (2023) 439-448.
[14] Y. Wu, L. Yang, J. Wang, S. Li, X. Zhang, D. Chen, Y. Ma, W. Yang, Degradable supramolecular eutectogel-based ionic skin with antibacterial, adhesive, and self-healable capabilities, ACS Appl. Mater. Interfaces. 15 (30) (2023) 36759-36770.
[15] R.a. Li, K. Zhang, G. Chen, B. Su, M. He, Stiff, Self-Healable, Transparent polymers with synergetic hydrogen bonding interactions, Chem. Mater. 33 (13) (2021) 5189-5196.
[16] R.a. Li, T. Fan, G. Chen, H. Xie, B. Su, M. He, Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions, J. Chem. Eng. 393 (2020) 124685.
[17] K. Zhang, R.a. Li, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, J. Mater. Chem. A 9 (8) (2021) 4890-4897.
[18] J.D. Mota-Morales, R.J. Sánchez-Leija, A. Carranza, J.A. Pojman, F. del Monte, G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials, Prog. Polym. Sci. 78 (2018) 139-153.
[19] K. Ajino, A. Torii, H. Ogawa, H. Mori, Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea, Polymer 204 (2020) 122803.
[20] J. Ruiz-Olles, P. Slavik, N.K. Whitelaw, D.K. Smith, Self-Assembled gels formed in deep eutectic solvents: Supramolecular eutectogels with high ionic conductivity, Angew. Chem., Int. Ed. Engl. 58 (13) (2019) 4173-4178.
[21] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/gelatin-based eutectogels for the sensitive strain sensor with recyclability and multienvironmental suitability, ACS Appl. Polym. Mater. 4 (5) (2022) 3982-3993.
[22] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-resistant, conductive, and robust eutectogels of metal salt-based deep eutectic solvents with poly(vinyl alcohol), ACS Appl. Polym. Mater. 4 (3) (2022) 2057-2064.
[23] O. Alonso-López, S. López-Ibáñez, R. Beiras, Assessment of toxicity and biodegradability of poly(vinyl alcohol)-based materials in marine water, Polymers 13 (21) (2021) 3742.
[24] S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges, J. Energy Storage 27 (2020) 101072.
[25] L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao, D. Qiu, A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels, Adv. Mater. 32 (52) (2020) 2004579.
[26] L. Zheng, H. Hua, Z. Zhang, Y. Zhu, L. Wang, Y. Li, PVA/ChCl deep eutectic polymer blends for transparent strain sensors with antifreeze, flexible, and recyclable properties, ACS Appl. Mater. Interfaces. 14 (43) (2022) 49212-49223.
[27] X. Sun, C. Luo, F. Luo, Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength, Eur. Polym. J. 124 (2020) 109465.
[28] H. Adelnia, R. Ensandoost, S. Shebbrin Moonshi, J.N. Gavgani, E.I. Vasafi, H.T. Ta, Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future, Eur. Polym. J. 164 (2022) 110974.
[29] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions, Adv. Funct. Mater. 32 (41) (2022) 2206305.
[30] Y. Wang, J. Wang, Z. Ma, L. Yan, A highly conductive, self-recoverable, and strong eutectogel of a deep eutectic solvent with polymer crystalline domain regulation, ACS Appl. Mater. Interfaces. 13 (45) (2021) 54409-54416.
[31] H. Wang, J. Li, X. Yu, G. Yan, X. Tang, Y. Sun, X. Zeng, L. Lin, Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion, Carbohydrate Polymers 255 (2021) 117443.
[32] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, Jammed microgels in deep eutectic solvents as a green and low-cost ink for 3D printing of reliable auxetic strain sensors, ACS Appl. Mater. Interfaces. 15 (27) (2023) 33109-33118.
References of supporting information
[1] Y. Wang, J. Wang, Z. Ma, L. Yan, A highly conductive, self-recoverable, and strong eutectogel of a deep eutectic solvent with polymer crystalline domain regulation, ACS Appl. Mater. Interfaces. 13 (45) (2021) 54409-54416.
[2] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions, Adv. Funct. Mater. 32 (41) (2022) 2206305.
[3] H. Wang, J. Li, X. Yu, G. Yan, X. Tang, Y. Sun, X. Zeng, L. Lin, Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion, Carbohydrate Polymers 255 (2021) 117443.
[4] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/gelatin-based eutectogels for the sensitive strain sensor with recyclability and multienvironmental suitability, ACS Appl. Polym. Mater. 4 (5) (2022) 3982-3993.
[5] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-resistant, conductive, and robust eutectogels of metal salt-based deep eutectic solvents with poly(vinyl alcohol), ACS Appl. Polym. Mater. 4 (3) (2022) 2057-2064.
3-6 References
[1] C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, Transparent, Ionic Conductors, Science 341(6149) (2013) 984-987.
[2] X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu, G. Parada, Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties, Chem. Rev. 121(8) (2021) 4309-4372.
[3] S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu, L.M. Stapleton, E.A. Appel, Translational Applications of Hydrogels, Chem. Rev. 121(18) (2021) 11385-11457.
[4] Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu, J. Wang, Ionic liquid-based gels for biomedical applications, Chem. Eng. J. 452 (2023) 139248. https://doi.org/10.1016/j.cej.2022.139248.
[5] M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus Hydrogels: Advantages, Challenges, and Applications, Adv. Funct. Mater. 33(27) (2023) 2301421.
[6] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep Eutectic Solvents: A Review of Fundamentals and Applications, Chem. Rev. 121(3) (2021) 1232-1285.
[7] A. Azzouz, M. Hayyan, Potential applications of deep eutectic solvents in nanotechnology: Part II, Chem. Eng. J. 468 (2023) 143563.
[8] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural Deep Eutectic Solvents – Solvents for the 21st Century, ACS Sustain. Chem. Eng. 2(5) (2014) 1063-1071.
[9] M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels, Mater. Adv. 3(21) (2022) 7709-7725.
[10] L.C. Tomé, D. Mecerreyes, Emerging Ionic Soft Materials Based on Deep Eutectic Solvents, J. Phys. Chem. B. 124(39) (2020) 8465-8478.
[11] J. Wang, S. Zhang, Z. Ma, L. Yan, Deep eutectic solvents eutectogels: progress and challenges, Green Chem. Eng. 2(4) (2021) 359-367.
[12] X. Sun, Y. Zhu, J. Zhu, K. Le, P. Servati, F. Jiang, Tough and Ultrastretchable Liquid-Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers, Adv. Funct. Mater. 32(29) (2022) 2202533.
[13] X. Zhang, Y. Rong, H. Li, J. Fei, X. Huang, Q. Bao, J. An, High tensile properties, wide temperature tolerance, and DLP-printable eutectogels for microarrays wearable strain sensors, Chem. Eng. J. 481 (2024) 149004.
[14] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors, ACS Appl. Mater. Interfaces 15(27) (2023) 33109-33118.
[15] C. Gu, M. Wang, K. Zhang, J. Li, Y.-L. Lu, Y. Cui, Y. Zhang, C.-S. Liu, A Full-Device Autonomous Self-Healing Stretchable Soft Battery from Self-Bonded Eutectogels, Adv. Mater. 35(6) (2023) 2208392.
[16] J.D. Mota-Morales, R.J. Sánchez-Leija, A. Carranza, J.A. Pojman, F. del Monte, G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials, Prog. Polym. Sci. 78 (2018) 139-153.
[17] K. Zhang, R.a. Li, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, J. Mater. Chem. A 9(8) (2021) 4890-4897.
[18] D. Du, J. Zhou, T. Kaneko, W. Dong, M. Chen, D. Shi, Stretchable and hydrophobic eutectogel for underwater human health monitoring based on hierarchical dynamic interactions, Chem. Eng. J. 474 (2023) 145704.
[19] R.a. Li, K. Zhang, G. Chen, B. Su, M. He, Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions, Chem. Mater. 33(13) (2021) 5189-5196.
[20] L. Fang, C. Zhang, W. Ge, M. Rong, F. Chen, Z. Chen, X. Wang, Z. Zheng, Q. Huang, Facile spinning of tough and conductive eutectogel fibers via Li+-induced dense hydrogen-bond networks, Chem. Eng. J. 478 (2023) 147405.
[21] K. Ajino, A. Torii, H. Ogawa, H. Mori, Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea, Polymer 204 (2020) 122803.
[22] J. Ruiz-Olles, P. Slavik, N.K. Whitelaw, D.K. Smith, Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity, Angew. Chem. Int. Ed. 58(13) (2019) 4173-4178.
[23] K. Fan, L. Wang, W. Wei, F. Wen, Y. Xu, X. Zhang, X. Guan, Multifunctional self-healing eutectogels induced by supramolecular assembly for smart conductive materials, interface lubrication and dye adsorption, Chem. Eng. J. 441 (2022) 136026.
[24] H. Qin, R.E. Owyeung, S.R. Sonkusale, M.J. Panzer, Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing, J. Mater. Chem. C 7(3) (2019) 601-608.
[25] M.B. Bianchi, C. Zhang, E. Catlin, G. Sandri, M. Calderón, E. Larrañeta, R.F. Donnelly, M.L. Picchio, A.J. Paredes, Bioadhesive eutectogels supporting drug nanocrystals for long-acting delivery to mucosal tissues, Mater. Today Bio 17 (2022) 100471.
[26] O. Alonso-López, S. López-Ibáñez, R. Beiras, Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water, Polymers 13(21) (2021) 3742.
[27] J. Yang, Y. Feng, B. Wang, J. Miao, S. Wei, H. Li, L. Mo, Z. Qin, Tough, multifunctional, and green double-network binary solvent eutectogel with in-situ generation of lignin nanoparticles based on one-step dual phase separations for wearable flexible strain sensors, Chem. Eng. J. 474 (2023) 145544.
[28] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non-Covalent Interactions, Adv. Funct. Mater. 32(41) (2022) 2206305.
[29] S. Chen, J. Feng, Facile Solvent Regulation for Highly Strong and Tough Physical Eutectogels with Remarkable Strain Sensitivity, ACS Appl. Mater. Interfaces 15(38) (2023) 44752-44762.
[30] Y. Wang, Y. Wang, L. Yan, Deep Eutectic Solvent-Induced Microphase Separation and Entanglement of PVA Chains for Tough and Reprocessable Eutectogels for Sensors, Langmuir 38(40) (2022) 12189-12197.
[31] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels, J. Colloid Interface Sci. 659 (2024) 495-502.
[32] N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels, Adv. Mater. 36(6) (2024) 2309576.
[33] Y. Wang, J. Wang, Z. Ma, L. Yan, A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation, ACS Appl. Mater. Interfaces 13(45) (2021) 54409-54416.
[34] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol), ACS Appl. Polym. Mater. 4(3) (2022) 2057-2064.
[35] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability, ACS Appl. Polym. Mater. 4(5) (2022) 3982-3993.
[36] B. Briscoe, P. Luckham, S. Zhu, The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions, Polymer 41(10) (2000) 3851-3860.
[37] L. Wang, Y. Yu, X. Zhao, Z. Zhang, X. Yuan, J. Cao, W. Meng, L. Ye, W. Lin, G. Wang, A Biocompatible Self-Powered Piezoelectric Poly(vinyl alcohol)-Based Hydrogel for Diabetic Wound Repair, ACS Appl. Mater. Interfaces 14(41) (2022) 46273-46289.
References of supporting information
[1] Y. Wang, J. Wang, Z. Ma, L. Yan, A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation, ACS Appl. Mater. Interfaces 13(45) (2021) 54409-54416.
[2] N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels, Adv. Mater. 36(6) (2024) 2309576.
[3] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol), ACS Appl. Polym. Mater. 4(3) (2022) 2057-2064.
[4] H. Wang, J. Li, X. Yu, G. Yan, X. Tang, Y. Sun, X. Zeng, L. Lin, Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion, Carbohydr. Polym. 255 (2021) 117443.
[5] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability, ACS Appl. Polym. Mater. 4(5) (2022) 3982-3993.
[6] B. Huang, W. Liu, Y. Lan, Y. Huang, L. Fu, B. Lin, C. Xu, Highly ion-conducting, robust and environmentally stable poly(vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors, Chem. Eng. J. 480 (2024) 147888.
[7] J. Yang, Y. Feng, B. Wang, J. Miao, S. Wei, H. Li, L. Mo, Z. Qin, Tough, multifunctional, and green double-network binary solvent eutectogel with in-situ generation of lignin nanoparticles based on one-step dual phase separations for wearable flexible strain sensors, Chem. Eng. J. 474 (2023) 145544.
[8] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non-Covalent Interactions, Adv. Funct. Mater. 32(41) (2022) 2206305.
[9] S. Chen, J. Feng, Facile Solvent Regulation for Highly Strong and Tough Physical Eutectogels with Remarkable Strain Sensitivity, ACS Appl. Mater. Interfaces 15(38) (2023) 44752-44762.
[10] Y. Wang, Y. Wang, L. Yan, Deep Eutectic Solvent-Induced Microphase Separation and Entanglement of PVA Chains for Tough and Reprocessable Eutectogels for Sensors, Langmuir 38(40) (2022) 12189-12197.
[11] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels, J. Colloid Interface Sci. 659 (2024) 495-502.
4-6 References
[1] S. Chaterji, I.K. Kwon, K. Park, Smart polymeric gels: Redefining the limits of biomedical devices, Prog. Polym. Sci. 32(8) (2007) 1083-1122.
[2] Y. Sun, X. Le, S. Zhou, T. Chen, Recent Progress in Smart Polymeric Gel-Based Information Storage for Anti-Counterfeiting, Adv. Mater. 34(41) (2022) 2201262.
[3] H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics, Chem. Soc. Rev. 48(6) (2019) 1642-1667.
[4] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep Eutectic Solvents: A Review of Fundamentals and Applications, Chem. Rev. 121(3) (2021) 1232-1285.
[5] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications, Chem. Rev. 114(21) (2014) 11060-11082.
[6] Z. Yang, Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents, Deep Eutectic Solvents2019, pp. 43-60.
[7] Y. Feng, J. Yu, D. Sun, C. Dang, W. Ren, C. Shao, R. Sun, Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing, Nano Energy 98 (2022) 107284.
[8] Y. Zhang, Y. Wang, Y. Guan, Y. Zhang, Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions, Nat. Commun. 13(1) (2022) 6671.
[9] Y. Liu, X. Zhang, B. Li, H. Chen, H. Li, J. Chen, H. Dong, Super stable, highly ion-conductive and transparent eutecto-/hydro-gel promotes wearable electronic and visual strain sensing, J. Chem. Eng. 461 (2023) 141965.
[10] L.C. Tomé, D. Mecerreyes, Emerging Ionic Soft Materials Based on Deep Eutectic Solvents, J. Phys. Chem. B 124(39) (2020) 8465-8478.
[11] M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels, Mater. Adv. 3(21) (2022) 7709-7725.
[12] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors, ACS Appl. Mater. Interfaces. 15(27) (2023) 33109-33118.
[13] Y. Xu, J. Cui, B. Guo, Z. Li, W. Wang, W. Li, Cellulose-based eutectogel electrolyte with high ionic conductivity for solid-state lithium-ion batteries, J. Chem. Eng. (2024) 151783.
[14] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels, J. Colloid Interface Sci. 659 (2024) 495-502.
[15] K. Fan, W. Wei, Z. Zhang, B. Liu, W. Feng, Y. Ma, X. Zhang, Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor, J. Chem. Eng. 449 (2022) 137878.
[16] K. Zhang, R.a. Li, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, J. Mater. Chem. A 9(8) (2021) 4890-4897.
[17] X. Sun, Y. Zhu, J. Zhu, K. Le, P. Servati, F. Jiang, Tough and Ultrastretchable Liquid-Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers, Adv. Funct. Mater. 32(29) (2022) 2202533.
[18] M. Isik, F. Ruiperez, H. Sardon, A. Gonzalez, S. Zulfiqar, D. Mecerreyes, Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers, Macromol. Rapid Commun. 37(14) (2016) 1135-1142.
[19] R.a. Li, T. Fan, G. Chen, K. Zhang, B. Su, J. Tian, M. He, Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers, Chem. Mater. 32(2) (2020) 874-881.
[20] R.a. Li, K. Zhang, G. Chen, B. Su, M. He, Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions, Chem. Mater. 33(13) (2021) 5189-5196.
[21] R.a. Li, T. Fan, G. Chen, H. Xie, B. Su, M. He, Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions, J. Chem. Eng. 393 (2020) 124685.
[22] J. Ruiz-Olles, P. Slavik, N.K. Whitelaw, D.K. Smith, Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity, Angew. Chem., Int. Ed. Engl. 58(13) (2019) 4173-4178.
[23] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability, ACS Appl. Polym. Mater. 4(5) (2022) 3982-3993.
[24] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol), ACS Appl. Polym. Mater. 4(3) (2022) 2057-2064.
[25] Y. Wang, J. Wang, Z. Ma, L. Yan, A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation, ACS Appl. Mater. Interfaces. 13(45) (2021) 54409-54416.
[26] N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels, Adv. Mater. 36(6) (2024) 2309576.
[27] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non-Covalent Interactions, Adv. Funct. Mater. 32(41) (2022) 2206305.
[28] Y. Jia, G. Sciutto, A. Botteon, C. Conti, M.L. Focarete, C. Gualandi, C. Samorì, S. Prati, R. Mazzeo, Deep eutectic solvent and agar: a new green gel to remove proteinaceous-based varnishes from paintings, J. Cult. Herit. 51 (2021) 138-144.
[29] H. Qin, R.E. Owyeung, S.R. Sonkusale, M.J. Panzer, Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing, J. Mater. Chem. C 7(3) (2019) 601-608.
[30] J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links, Science 374(6564) (2021) 212-216.
[31] G. Nian, J. Kim, X. Bao, Z. Suo, Making Highly Elastic and Tough Hydrogels from Doughs, Adv. Mater. 34(50) (2022) 2206577.
[32] H. Ye, B. Wu, S. Sun, P. Wu, Self-compliant ionic skin by leveraging hierarchical hydrogen bond association, Nat. Commun. 15(1) (2024) 885.
[33] Y. Kamiyama, R. Tamate, T. Hiroi, S. Samitsu, K. Fujii, T. Ueki, Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers, Sci. Adv. 8(42) (2022) eadd0226.
[34] Y. Li, X. Feng, C. Sui, J. Xu, W. Zhao, S. Yan, Highly entangled elastomer with ultra-fast self-healing capability and high mechanical strength, J. Chem. Eng. 479 (2024) 147689.
[35] Y. Kamiyama, R. Tamate, K. Fujii, T. Ueki, Controlling mechanical properties of ultrahigh molecular weight ion gels by chemical structure of ionic liquids and monomers, Soft Matter 18(45) (2022) 8582-8590.
[36] Y.-C. Chiu, T.H. Vo, Y.-J. Sheng, H.-K. Tsao, Spontaneous Formation of Microgels for a 3D Printing Supporting Medium, ACS Appl. Polym. Mater. 5(1) (2023) 764-774. |