參考文獻 |
[1] Ahmed, M., Pan, S., Su, J., Cao, X., Zhang, W., Wen, B., & Liu, Y. (2022). BERT-ASC: Implicit Aspect Representation Learning through Auxiliary-Sentence Construction for Sentiment Analysis (arXiv:2203.11702). arXiv. https://doi.org/10.48550/arXiv.2203.11702
[2] Akehurst, G. (2008). User generated content: The use of blogs for tourism organisations and tourism consumers. Service Business, 3(1), 51. https://doi.org/10.1007/s11628-008-0054-2
[3] Akhtar, N., Zubair, N., Kumar, A., & Ahmad, T. (2017). Aspect based Sentiment Oriented Summarization of Hotel Reviews. Procedia Computer Science, 115, 563–571. https://doi.org/10.1016/j.procs.2017.09.115
[4] Al-Smadi, M., Al-Ayyoub, M., Jararweh, Y., & Qawasmeh, O. (2019). Enhancing Aspect-Based Sentiment Analysis of Arabic Hotels’ reviews using morphological, syntactic and semantic features. Information Processing & Management, 56(2), 308–319. https://doi.org/10.1016/j.ipm.2018.01.006
[5] Appel, G., Grewal, L., Hadi, R., & Stephen, A. T. (2020). The future of social media in marketing. Journal of the Academy of Marketing Science, 48(1), 79–95. https://doi.org/10.1007/s11747-019-00695-1
[6] Azhar, A. N., Khodra, M. L., & Sutiono, A. P. (2019). Multi-label Aspect Categorization with Convolutional Neural Networks and Extreme Gradient Boosting. 2019 International Conference on Electrical Engineering and Informatics (ICEEI), 35–40. https://doi.org/10.1109/ICEEI47359.2019.8988898
[7] Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. https://doi.org/10.1016/j.knosys.2021.107134
[8] Chang, Y.-C., Ku, C.-H., & Chen, C.-H. (2019). Social media analytics: Extracting and visualizing Hilton hotel ratings and reviews from TripAdvisor. International Journal of Information Management, 48, 263–279. https://doi.org/10.1016/j.ijinfomgt.2017.11.001
[9] Chen, F., & Huang, Y. (2019). Knowledge-enhanced neural networks for sentiment analysis of Chinese reviews. Neurocomputing, 368, 51–58. https://doi.org/10.1016/j.neucom.2019.08.054
[10] Colicev, A., Kumar, A., & O’Connor, P. (2019). Modeling the relationship between firm and user generated content and the stages of the marketing funnel. International Journal of Research in Marketing, 36(1), 100–116. https://doi.org/10.1016/j.ijresmar.2018.09.005
[11] Daugherty, T., Eastin, M. S., & Bright, L. (2008). Exploring Consumer Motivations for Creating User-Generated Content. Journal of Interactive Advertising, 8(2), 16–25. https://doi.org/10.1080/15252019.2008.10722139
[12] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423
[13] Ganu, G., Elhadad, N., & Marian, A. (2009). Beyond the Stars: Improving Rating Predictions using Review Text Content. International Workshop on the Web and Databases. https://www.semanticscholar.org/paper/Beyond-the-Stars%3A-Improving-Rating-Predictions-Text-Ganu-Elhadad/1b41abbf9d3707a1a5c0fcf8e1f7734da0e61703
[14] Glaveli, N., Manolitzas, P., Palamas, S., Grigoroudis, E., & Zopounidis, C. (2023). Developing effective strategic decision-making in the areas of hotel quality management and customer satisfaction from online ratings. Current Issues in Tourism, 26(6), 1003–1021. https://doi.org/10.1080/13683500.2022.2048805
[15] Hollebeek, L. D., & Macky, K. (2019). Digital Content Marketing’s Role in Fostering Consumer Engagement, Trust, and Value: Framework, Fundamental Propositions, and Implications. Journal of Interactive Marketing, 45(1), 27–41. https://doi.org/10.1016/j.intmar.2018.07.003
[16] Jafarian, H., Taghavi, A. H., Javaheri, A., & Rawassizadeh, R. (2021). Exploiting BERT to Improve Aspect-Based Sentiment Analysis Performance on Persian Language. 2021 7th International Conference on Web Research (ICWR), 5–8. https://doi.org/10.1109/ICWR51868.2021.9443131
[17] Kim, J. J., & Han, H. (2022). Saving the hotel industry: Strategic response to the COVID-19 pandemic, hotel selection analysis, and customer retention. International Journal of Hospitality Management, 102, 103163. https://doi.org/10.1016/j.ijhm.2022.103163
[18] Kiritchenko, S., Zhu, X., Cherry, C., & Mohammad, S. (2014). NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 437–442. https://doi.org/10.3115/v1/S14-2076
[19] Lai, X., Wang, F., & Wang, X. (2021). Asymmetric relationship between customer sentiment and online hotel ratings: The moderating effects of review characteristics. International Journal of Contemporary Hospitality Management, 33(6), 2137–2156. https://doi.org/10.1108/IJCHM-07-2020-0708
[20] Lam, J. M. S., Ismail, H., & Lee, S. (2020). From desktop to destination: User-generated content platforms, co-created online experiences, destination image and satisfaction. Journal of Destination Marketing & Management, 18, 100490. https://doi.org/10.1016/j.jdmm.2020.100490
[21] Leposa, A. (2019). Stats: Travel Industry Second-Fastest Growing Sector in the World. Travel Agent Central. https://www.travelagentcentral.com/running-your-business/stats-travel-industry-second-fastest-growing-sector-world
[22] Li, F., Larimo, J., & Leonidou, L. C. (2021). Social media marketing strategy: Definition, conceptualization, taxonomy, validation, and future agenda. Journal of the Academy of Marketing Science, 49(1), 51–70. https://doi.org/10.1007/s11747-020-00733-3
[23] Li, H., Ye, Q., & Law, R. (2013). Determinants of Customer Satisfaction in the Hotel Industry: An Application of Online Review Analysis. Asia Pacific Journal of Tourism Research, 18(7), 784–802. https://doi.org/10.1080/10941665.2012.708351
[24] Liao, W., Zeng, B., Yin, X., & Wei, P. (2021). An improved aspect-category sentiment analysis model for text sentiment analysis based on RoBERTa. Applied Intelligence, 51(6), 3522–3533. https://doi.org/10.1007/s10489-020-01964-1
[25] Lin, Y.-C., & Chen, C.-M. (2022). How do hotel characteristics moderate the impact of COVID-19 on hotel performance? Evidence from Taiwan. Current Issues in Tourism, 25(8), 1192–1197. https://doi.org/10.1080/13683500.2021.1910213
[26] Liu, B. (2012). Sentiment Analysis and Opinion Mining. Springer International Publishing. https://doi.org/10.1007/978-3-031-02145-9
[27] Liu, J., Teng, Z., Cui, L., Liu, H., & Zhang, Y. (2021). Solving Aspect Category Sentiment Analysis as a Text Generation Task. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 4406–4416. https://doi.org/10.18653/v1/2021.emnlp-main.361
[28] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. https://openreview.net/forum?id=SyxS0T4tvS
[29] Lu, W., & Stepchenkova, S. (2015). User-Generated Content as a Research Mode in Tourism and Hospitality Applications: Topics, Methods, and Software. Journal of Hospitality Marketing & Management, 24(2), 119–154. https://doi.org/10.1080/19368623.2014.907758
[30] Luo, J., Huang, S. (Sam), & Wang, R. (2021). A fine-grained sentiment analysis of online guest reviews of economy hotels in China. Journal of Hospitality Marketing & Management, 30(1), 71–95. https://doi.org/10.1080/19368623.2020.1772163
[31] Ma, D., Li, S., Zhang, X., & Wang, H. (2017). Interactive Attention Networks for Aspect-Level Sentiment Classification. 4068–4074.
[32] Maks, I., & Vossen, P. (2012). A lexicon model for deep sentiment analysis and opinion mining applications. Decision Support Systems, 53(4), 680–688. https://doi.org/10.1016/j.dss.2012.05.025
[33] Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
[34] Miao, L., Im, J., So, K. K. F., & Cao, Y. (2022). Post-pandemic and post-traumatic tourism behavior. Annals of Tourism Research, 95, 103410. https://doi.org/10.1016/j.annals.2022.103410
[35] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space (arXiv:1301.3781). arXiv. https://doi.org/10.48550/arXiv.1301.3781
[36] Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep Learning--based Text Classification: A Comprehensive Review. ACM Computing Surveys, 54(3), 62:1-62:40. https://doi.org/10.1145/3439726
[37] Mostafa, L. (2020). Machine Learning-Based Sentiment Analysis for Analyzing the Travelers Reviews on Egyptian Hotels. A.-E. Hassanien, A. T. Azar, T. Gaber, D. Oliva, & F. M. Tolba, Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020) (pp. 405–413). Springer International Publishing. https://doi.org/10.1007/978-3-030-44289-7_38
[38] Movahedi, S., Ghadery, E., Faili, H., & Shakery, A. (2019). Aspect Category Detection via Topic-Attention Network (arXiv:1901.01183). arXiv. http://arxiv.org/abs/1901.01183
[39] Narangajavana Kaosiri, Y., Callarisa Fiol, L. J., Moliner Tena, M. Á., Rodríguez Artola, R. M., & Sánchez García, J. (2019). User-Generated Content Sources in Social Media: A New Approach to Explore Tourist Satisfaction. Journal of Travel Research, 58(2), 253–265. https://doi.org/10.1177/0047287517746014
[40] Nazir, A., Rao, Y., Wu, L., & Sun, L. (2022). Issues and Challenges of Aspect-based Sentiment Analysis: A Comprehensive Survey. IEEE Transactions on Affective Computing, 13(2), 845–863. https://doi.org/10.1109/TAFFC.2020.2970399
[41] Nemes, L., & Kiss, A. (2021). Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, 5(1), 1–15. https://doi.org/10.1080/24751839.2020.1790793
[42] OECD. (2020). OECD Tourism Trends and Policies 2020. OECD. https://doi.org/10.1787/6b47b985-en
[43] Oh, H., & Parks, S. C. (1996). Customer Satisfaction and Service Quality: A Critical Review of the Literature and Research Implications for the Hospitality Industry. Hospitality Research Journal, 20(3), 35–64. https://doi.org/10.1177/109634809602000303
[44] Palakvangsa-Na-Ayudhya, S., Sriarunrungreung, V., Thongprasan, P., & Porcharoen, S. (2011). Nebular: A sentiment classification system for the tourism business. 2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE), 293–298. https://doi.org/10.1109/JCSSE.2011.5930137
[45] Pathak, A., Kumar, S., Roy, P. P., & Kim, B.-G. (2021). Aspect-Based Sentiment Analysis in Hindi Language by Ensembling Pre-Trained mBERT Models. Electronics, 10(21), Article 21. https://doi.org/10.3390/electronics10212641
[46] Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162
[47] Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., & Manandhar, S. (2014). SemEval-2014 Task 4: Aspect Based Sentiment Analysis. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 27–35. https://doi.org/10.3115/v1/S14-2004
[48] Priyantina, R., & Sarno, R. (2019). Sentiment Analysis of Hotel Reviews Using Latent Dirichlet Allocation, Semantic Similarity and LSTM. International Journal of Intelligent Engineering and Systems, 12, 142–155. https://doi.org/10.22266/ijies2019.0831.14
[49] Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing Volume 1 - EMNLP ’09, 1, 248. https://doi.org/10.3115/1699510.1699543
[50] Ray, B., Garain, A., & Sarkar, R. (2021). An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Applied Soft Computing, 98, 106935. https://doi.org/10.1016/j.asoc.2020.106935
[51] Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813–830. https://doi.org/10.1109/TKDE.2015.2485209
[52] Sharpley, R. (2000). The influence of the accommodation sector on tourism development: Lessons from Cyprus. International Journal of Hospitality Management, 19(3), 275–293. https://doi.org/10.1016/S0278-4319(00)00021-9
[53] Shen, H., Zhao, C., Fan, D. X. F., & Buhalis, D. (2022). The effect of hotel livestreaming on viewers’ purchase intention: Exploring the role of parasocial interaction and emotional engagement. International Journal of Hospitality Management, 107, 103348. https://doi.org/10.1016/j.ijhm.2022.103348
[54] Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence (arXiv:1903.09588). arXiv. https://doi.org/10.48550/arXiv.1903.09588
[55] Tang, D., Qin, B., Feng, X., & Liu, T. (2016). Effective LSTMs for Target-Dependent Sentiment Classification. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 3298–3307. https://aclanthology.org/C16-1311
[56] Tang, D., Qin, B., & Liu, T. (2016). Aspect Level Sentiment Classification with Deep Memory Network. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 214–224. https://doi.org/10.18653/v1/D16-1021
[57] Tulkens, S., & van Cranenburgh, A. (2020). Embarrassingly Simple Unsupervised Aspect Extraction. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 3182–3187. https://doi.org/10.18653/v1/2020.acl-main.290
[58] Wagner, J., Arora, P., Cortes, S., Barman, U., Bogdanova, D., Foster, J., & Tounsi, L. (2014). DCU: Aspect-based Polarity Classification for SemEval Task 4. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 223–229. https://doi.org/10.3115/v1/S14-2036
[59] Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016). Attention-based LSTM for Aspect-level Sentiment Classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 606–615. https://doi.org/10.18653/v1/D16-1058
[60] World Tourism Organization (UNWTO). (2018). UNWTO Tourism Highlights: 2018 Edition. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284419876
[61] World Tourism Organization (UNWTO). (2021). The Economic Contribution of Tourism and the Impact of COVID-19. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284423200
[62] Wu, Z., & Ong, D. C. (2020). Context-Guided BERT for Targeted Aspect-Based Sentiment Analysis (arXiv:2010.07523). arXiv. https://doi.org/10.48550/arXiv.2010.07523
[63] Xenos, D., Theodorakakos, P., Pavlopoulos, J., Malakasiotis, P., & Androutsopoulos, I. (2016). AUEB-ABSA at SemEval-2016 Task 5: Ensembles of Classifiers and Embeddings for Aspect Based Sentiment Analysis. 312–317. https://doi.org/10.18653/v1/S16-1050
[64] Xianghua, F., Guo, L., Yanyan, G., & Zhiqiang, W. (2013). Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon. Knowledge-Based Systems, 37, 186–195. https://doi.org/10.1016/j.knosys.2012.08.003
[65] Xu, H., Liu, B., Shu, L., & Yu, P. S. (2019). BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis (arXiv:1904.02232). arXiv. https://doi.org/10.48550/arXiv.1904.02232
[66] Xue, W., & Li, T. (2018). Aspect Based Sentiment Analysis with Gated Convolutional Networks. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2514–2523. https://doi.org/10.18653/v1/P18-1234
[67] Yang, M., Yin, W., Qu, Q., Tu, W., Shen, Y., & Chen, X. (2021). Neural Attentive Network for Cross-Domain Aspect-Level Sentiment Classification. IEEE Transactions on Affective Computing, 12(3), 761–775. https://doi.org/10.1109/TAFFC.2019.2897093
[68] Yu, L.-C., Wu, J.-L., Chang, P.-C., & Chu, H.-S. (2013). Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news. Knowledge-Based Systems, 41, 89–97. https://doi.org/10.1016/j.knosys.2013.01.001
[69] Yu, S., Su, J., & Luo, D. (2019). Improving BERT-Based Text Classification With Auxiliary Sentence and Domain Knowledge. IEEE Access, 7, 176600–176612. https://doi.org/10.1109/ACCESS.2019.2953990
[70] Zhang, W., Li, X., Deng, Y., Bing, L., & Lam, W. (2022). A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges (arXiv:2203.01054). arXiv. https://doi.org/10.48550/arXiv.2203.01054
[71] Zhou, X., Wan, X., & Xiao, J. (2015). Representation Learning for Aspect Category Detection in Online Reviews. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Article 1. https://doi.org/10.1609/aaai.v29i1.9194 |