博碩士論文 110423019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.135.193.179
姓名 廖七分(Ci-Fen Liao)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱
(Graph-based Similar Visits Enhanced Representation for Medication Recommendation)
相關論文
★ 多重標籤文本分類之實證研究 : word embedding 與傳統技術之比較★ 基於圖神經網路之網路協定關聯分析
★ 學習模態間及模態內之共用表示式★ Hierarchical Classification and Regression with Feature Selection
★ 病徵應用於病患自撰日誌之情緒分析★ 基於注意力機制的開放式對話系統
★ 針對特定領域任務—基於常識的BERT模型之應用★ 基於社群媒體使用者之硬體設備差異分析文本情緒強烈程度
★ 機器學習與特徵工程用於虛擬貨幣異常交易監控之成效討論★ 捷運轉轍器應用長短期記憶網路與機器學習實現最佳維保時間提醒
★ 基於半監督式學習的網路流量分類★ ERP日誌分析-以A公司為例
★ 企業資訊安全防護:網路封包蒐集分析與網路行為之探索性研究★ 資料探勘技術在顧客關係管理之應用─以C銀行數位存款為例
★ 人臉圖片生成與增益之可用性與效率探討分析★ 人工合成文本之資料增益於不平衡文字分類問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 藥物推薦在醫療資訊的應用領域是一項重要任務。先前的方法論都沒有善加利用 診療紀錄之間的醫療代碼的相似性來促進學習,並且過度強調單一病患的歷史診療紀 錄,而沒有妥善利用大量只有一次診療紀錄的病患資料。同時,近年的方法論中大多 數需要依靠外部知識的協助或是複雜的模型設計來提促進表現,使模型的適用範圍愈 趨狹隘,並且大多數研究都只以 MIMIC-III 資料集進行驗證。本研究提出一個能夠有效 利用所有看診紀錄的方法論 GSVEMed,並且使用兩個電子醫療紀錄資料集執行實驗, 強調以資料集本身的學習促進表現而不依賴外部知識,在結構簡單的情況下於 MIMIC- III 資料集取得與最先進作法相抗衡且在私人資料集明顯超過最先進作法的表現,並且 根據不同加護病房類型與醫院內科科別進行分析。
摘要(英) Medication recommendation is an important task in healthcare informatics. Previous methodologies have not effectively utilized the similarity of medical codes between visit records to facilitate learning. They have also overly emphasized the historical visit records of individual patients, without properly utilizing a large amount of patient data that consists of only one visit record. Additionally, most recent methodologies have relied on external knowledge or complex model architecture to improve performance, making the scope of application increasingly narrow. Furthermore, most studies have only validated their approaches using MIMIC-III dataset. This study proposes a method called GSVEMed that effectively utilizes all visit records. We conduct experiments using two electronic medical record (EMR) datasets, emphasizing performance improvement through learning from the datasets themselves rather than relying on external knowledge. Under the condition of a simple architecture, GSVEMed achieves performance comparable to state-of-the-art approaches on MIMIC-III dataset and significantly outperforms them on our private dataset. This study also conducts analyses based on different types of intensive care units of MIMIC-III and internal medicine departments of the private dataset.
關鍵字(中) ★ 藥物推薦
★ 電子醫療病歷
★ 圖卷積神經網路
★ Transformer
關鍵字(英) ★ Medication recommendation
★ EMR
★ EHR
★ GCN
★ Transformer
論文目次 摘 要......................................................................................................................................I
Abstract ................................................................................................................................ II Acknowledgement ............................................................................................................... III
Table of Content .................................................................................................................. IV
List of Figures...................................................................................................................... VI
List of Tables ......................................................................................................................VII
List of Appendixes............................................................................................................ VIII
1. Introduction...................................................................................................................... 1
Overview ................................................................................................................ 1
Motivation.............................................................................................................. 2
Objectives .............................................................................................................. 3
Thesis Organization ................................................................................................ 5
2. Related Works..................................................................................................................6
Instance-based Methods.......................................................................................... 6
Longitudinal Methods............................................................................................. 7
GNN in Medication Recommendation .................................................................. 12
Discussion ............................................................................................................ 14
3. Methodology ................................................................................................................... 16
Notation Definition............................................................................................... 16
EMR Notation .................................................................................................... 16
Graph Notation ................................................................................................... 16
DDI Adjacency Matrix Notation ......................................................................... 17
Model Architecture............................................................................................... 18
Medical Code Embedding................................................................................... 19
Graph Visit Representation Learning .................................................................. 19
Multi-visits Embedding ...................................................................................... 20
Aggregated Embedding ...................................................................................... 20
Training and Inference.......................................................................................... 21
Dataset ................................................................................................................. 22
MIMIC-III .......................................................................................................... 22
CYCH ................................................................................................................ 22
Experiment Settings.............................................................................................. 23
Data Preprocessing ............................................................................................. 23
Model Settings.................................................................................................... 25
Experiment Process .............................................................................................. 26
Evaluation Metrics................................................................................................ 26
Jaccard Similarity ............................................................................................... 26
F1-Score ............................................................................................................. 27
PRAUC .............................................................................................................. 28
DDI Rate ............................................................................................................ 28
Experiment Design ............................................................................................... 29
Experiment 1 – Effectiveness of GSVEMed ....................................................... 29
Experiment 2 – Model Performance in ICUs and Departments ........................... 32
4. Experiment Results ........................................................................................................ 37
Experiment 1 – Effectiveness of GSVEMed ......................................................... 37
Experiment 1 Results .......................................................................................... 37
Summary of Experiment 1 .................................................................................. 42
Experiment 2 – Model Performance in ICUs and Departments ............................. 43
Experiment 2 Results .......................................................................................... 43
Case study of Experiment 2 ................................................................................ 49
Summary of Experiment 2 .................................................................................. 56
5. Conclusion ...................................................................................................................... 58
Overall Summary ................................................................................................. 58
Contributions........................................................................................................ 59
Limitations ........................................................................................................... 59
Future Research .................................................................................................... 60
Reference............................................................................................................................. 61
Appendixes .......................................................................................................................... 65
參考文獻 An, Y., Zhang, L., You, M., Tian, X., Jin, B., Wei, X., 2021. MeSIN: Multilevel selective and interactive network for medication recommendation. Knowl.-Based Syst. 233. https://doi.org/10.1016/j.knosys.2021.107534
Chang, W., Zhang, Q., Fu, C., Liu, W., Zhang, G., Lu, J., 2021. A cross-domain recommender system through information transfer for medical diagnosis. Decis. Support Syst. 143, 113489.
Choi, E., Bahadori, M.T., Kulas, J.A., Schuetz, A., Stewart, W.F., Sun, J., 2016a. RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16. Curran Associates Inc., Red Hook, NY, USA, pp. 3512–3520.
Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J., 2016b. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. JMLR Workshop Conf. Proc. 56, 301– 318.
Davazdahemami, B., Zolbanin, H.M., Delen, D., 2022. An explanatory machine learning framework for studying pandemics: The case of COVID-19 emergency department readmissions. Decis. Support Syst. 161, 113730.
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Presented at the NAACL-HLT 2019, Association for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186. https://doi.org/10.18653/v1/N19-1423
Gong, F., Wang, M., Wang, H., Wang, S., Liu, M., 2021. SMR: medical knowledge graph embedding for safe medicine recommendation. Big Data Res. 23, 100174.
Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Colmenarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou, J., 2016. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476.
He, Y., Wang, C., Li, N., Zeng, Z., 2020. Attention and Memory-Augmented Networks for Dual-View Sequential Learning, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20. Association for Computing Machinery, New York, NY, USA, pp. 125–134. https://doi.org/10.1145/3394486.3403055
Johnson, A.E., Pollard, T.J., Shen, L., Lehman, L.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G., 2016. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 1–9.
Kipf, T.N., Welling, M., 2022. Semi-Supervised Classification with Graph Convolutional Networks. Presented at the International Conference on Learning Representations.
Le, H., Tran, T., Venkatesh, S., 2018a. Dual Control Memory Augmented Neural Networks for Treatment Recommendations, in: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (Eds.), Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 273–284. https://doi.org/10.1007/978-3-319-93040-4_22
Le, H., Tran, T., Venkatesh, S., 2018b. Dual Memory Neural Computer for Asynchronous Two- view Sequential Learning. KDD. https://doi.org/10.1145/3219819.3219981
Li, X., Zhang, Y., Wang, J., Lu, M., Lin, H., 2022. Knowledge-Enhanced Dual Graph Neural Network for Robust Medicine Recommendation, in: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp. 477–482.
Mao, C., Yao, L., Luo, Y., 2022. MedGCN: Medication recommendation and lab test imputation via graph convolutional networks. J. Biomed. Inform. 127, 104000. https://doi.org/10.1016/j.jbi.2022.104000
Shang, J., Ma, T., Xiao, C., Sun, J., 2019a. Pre-training of Graph Augmented Transformers for Medication Recommendation, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Presented at the Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}, International Joint Conferences on Artificial Intelligence Organization, Macao, China, pp. 5953–5959. https://doi.org/10.24963/ijcai.2019/825
Shang, J., Xiao, C., Ma, T., Li, H., Sun, J., 2019b. GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination. Proc. AAAI Conf. Artif. Intell. 33, 1126–1133. https://doi.org/10.1609/aaai.v33i01.33011126
Su, C., Gao, S., Li, S., 2020. GATE: Graph-Attention Augmented Temporal Neural Network for Medication Recommendation. IEEE Access 8, 125447–125458. https://doi.org/10.1109/ACCESS.2020.3007835
Tan, Y., Kong, C., Yu, L., Li, P., Chen, C., Zheng, X., Hertzberg, V.S., Yang, C., 2022. 4SDrug: Symptom-based Set-to-set Small and Safe Drug Recommendation, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 3970– 3980.
Tatonetti, N.P., Ye, P.P., Daneshjou, R., Altman, R.B., 2012. Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4, 125ra31-125ra31.
Wang, L., Zhang, W., He, X., Zha, H., 2018. Personalized prescription for comorbidity, in: Database Systems for Advanced Applications: 23rd International Conference, DASFAA 2018, Gold Coast, QLD, Australia, May 21-24, 2018, Proceedings, Part II 23. Springer, pp. 3–19.
Wang, S., Ren, P., Chen, Z., Ren, Z., Ma, J., de Rijke, M., 2019. Order-free medicine combination prediction with graph convolutional reinforcement learning, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1623–1632.
Wang, Y., Chen, W., Pi, D., Yue, L., 2021a. Adversarially regularized medication recommendation model with multi-hop memory network. Knowl. Inf. Syst. 63, 125–142. https://doi.org/10.1007/s10115-020-01513-9
Wang, Y., Chen, W., Pi, D., Yue, L., Wang, S., Xu, M., 2021b. Self-Supervised Adversarial Distribution Regularization for Medication Recommendation, in: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Presented at the Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}, International Joint Conferences on Artificial Intelligence Organization, Montreal, Canada, pp. 3134–3140. https://doi.org/10.24963/ijcai.2021/431
Wu, J., Dong, Y., Gao, Z., Gong, T., Li, C., 2023. Dual Attention and Patient Similarity Network for Drug Recommendation. Bioinformatics 39, btad003.
Wu, J., Qian, B., Li, Y., Gao, Z., Ju, M., Yang, Y., Zheng, Y., Gong, T., Li, C., Zhang, X., 2022. Leveraging multiple types of domain knowledge for safe and effective drug recommendation, in: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. pp. 2169–2178.
Wu, R., Qiu, Z., Jiang, J., Qi, G., Wu, X., 2022. Conditional Generation Net for Medication Recommendation, in: Proceedings of the ACM Web Conference 2022, WWW ’22. Association for Computing Machinery, New York, NY, USA, pp. 935–945. https://doi.org/10.1145/3485447.3511936
Xia, L., 2022. Historical profile will tell? A deep learning-based multi-level embedding framework for adverse drug event detection and extraction. Decis. Support Syst. 160, 113832.
Yang, C., Xiao, C., Glass, L., Sun, J., 2021a. Change Matters: Medication Change Prediction with Recurrent Residual Networks, in: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Presented at the Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}, International Joint Conferences on Artificial Intelligence Organization, Montreal, Canada, pp. 3728–3734. https://doi.org/10.24963/ijcai.2021/513
Yang, C., Xiao, C., Ma, F., Glass, L., Sun, J., 2021b. SafeDrug: Dual Molecular Graph Encoders for Recommending Effective and Safe Drug Combinations, in: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Presented at the Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}, International Joint Conferences on Artificial Intelligence Organization, Montreal, Canada, pp. 3735–3741. https://doi.org/10.24963/ijcai.2021/514
Zhang, Y., Chen, R., Tang, J., Stewart, W.F., Sun, J., 2017. LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17. Association for Computing Machinery, New York, NY, USA, pp. 1315–1324. https://doi.org/10.1145/3097983.3098109
指導教授 柯士文(Shin-Wen Ke) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明