博碩士論文 110423028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.158.137
姓名 曾雅君(Ya-Chun Tseng)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱
(NNI4Rec: Predicting Unknown Item with Neighborhood’s Next Item for Sequential-based Recommendation)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 在電子商務中,推薦系統所扮演的角色,其重要性不言而喻。然而,在傳統的基於Session或序列推薦模式中,通常使用先前的項目來推薦可能出現的下一個項目。這種方法面臨一個主要的挑戰,那就是人們傾向於重複購買。當用戶喜歡某項商品時,他們很可能再次選擇同樣的商品,這導致推薦系統多數推薦的項目其實已在之前的序列中出現過。
然而,本論文認為一個準確、與吸引力兼具的推薦系統應該向用戶推薦他們還未發現但可能會喜歡的產品,一旦用戶知曉該產品,他們就有可能進行購買。因此,在預備資料時,本文會根據每個用戶的目標項目,將序列中先前出現過的目標項目全部刪除,確保用戶對該項目一無所知,而我們所提出的模型將在此情況下對目標項目進行預測。
本文根據序列中相鄰項目的後續項目概念,設計了一個深度網路架構,此架構能夠整合局部與全局資訊,以實現成功預測目標項目的目標。我們已對多個真實世界資料集的實驗進行廣泛的測試,結果顯示本文提出的深度學習架構在性能上優於幾種最先進的推薦方法。
摘要(英) In e-commerce, the importance of recommendation systems is increasing day by day. However, in traditional session-based or sequence-based recommendation modes, previous items are usually used to recommend the possible next item. This approach faces a significant challenge as people tend to repeat purchases. When users like a certain item, they are likely to choose the same item again, resulting in the majority of items recommended by the recommendation system having already appeared in previous sequences. However, this paper argues that an attractive recommendation system should recommend products to users that they don′t know but might like, and once they are aware of such products, they may choose to purchase them. Therefore, when preparing the data, this paper will delete all the target items that have previously appeared in the sequence based on each user′s target item, ensuring that users are unaware of the item. The model proposed in this paper will then predict the target item under this circumstance. This paper designs a deep network architecture based on the concept of the subsequent item of adjacent items in the sequence, incorporating both global and local information to achieve the goal of successfully predicting the target item. Through experiments with multiple real-world datasets, we conducted extensive testing, and the results show that the deep network architecture proposed in this paper outperforms several state-of-the-art recommendation methods in performance.
關鍵字(中) ★ 下一個項目推薦
★ 項目嵌入
★ 深度學習
★ 全局資訊
★ 神經網路
關鍵字(英) ★ Next Item Recommendation
★ Item Embedding
★ Deep Learning
★ Global information
★ Neural Network
論文目次 Contents
摘要...........................................................................................................................................................i
List of Figures..........................................................................................................................................v
List of Tables...........................................................................................................................................vi
1. Introduction .................................................................................................................................... 1
2. Related work................................................................................................................................... 8
2-1 Session-based recommendation ............................................................................................... 8
2-2 Sequential-based recommendation......................................................................................... 10
2-3 Serendipity recommendation.................................................................................................. 13
2-4 Summary ................................................................................................................................ 15
3. Proposed approach........................................................................................................................ 16
3-1 Overview................................................................................................................................ 16
3-2 Preprocessing ......................................................................................................................... 21
3-2-1 Item embedding .................................................................................................................. 21
3-2-2 Neighborhood Item (NI) ..................................................................................................... 23
3-2-3 Neighborhood’s Next Item (NNI)....................................................................................... 24
3-3 Model ..................................................................................................................................... 24
3-3-1 Local Information Module (LIM)....................................................................................... 24
3-3-2 Neighborhood’s Next Item Module (NNIM)...................................................................... 27
3-3-3 Preference prediction .......................................................................................................... 28
3-3-4 Network training ................................................................................................................. 29
4. Experiments.................................................................................................................................. 30
4-1 Datasets.................................................................................................................................. 30
4-2 Research evaluation metrics................................................................................................... 31
4-3 Baselines settings................................................................................................................... 32
4-4 Experimental platform ........................................................................................................... 34
5. Results.......................................................................................................................................... 35
5-1 Performance of models........................................................................................................... 35
5-2 Ablation study ........................................................................................................................ 38
5-3 Sensitivity analysis................................................................................................................. 41
5-3-1 Impact of the number of neighborhood items, ? ................................................................ 41
5-3-2 Impact of the number of Neighborhood’s Next Items, ?................................................... 42
5-3-3 Impact of the number of history items, ?........................................................................... 43
5-3-4 Impact of the batch size, ?................................................................................................. 44
6. Conclusion and future work ......................................................................................................... 47
6-1 Conclusion.............................................................................................................................. 47
6-2 Future work ............................................................................................................................ 48
iv
Reference............................................................................................................................................... 50
參考文獻 [1] P. Castells, N. Hurley, and S. Vargas, “Novelty and Diversity in Recommender Systems,” in Recommender Systems Handbook, F. Ricci, L. Rokach, and B. Shapira, Eds., New York, NY: Springer US, 2022, pp. 603–646. doi: 10.1007/978-1-0716-2197-4_16.
[2] J. Liu, P. Dolan, and E. R. Pedersen, “Personalized news recommendation based on click behavior,” in Proceedings of the 15th international conference on Intelligent user interfaces, in IUI ’10. New York, NY, USA: Association for Computing Machinery, Feb. 2010, pp. 31–40. doi: 10.1145/1719970.1719976.
[3] M. Goyani and N. Chaurasiya, “A Review of Movie Recommendation System: Limitations, Survey and Challenges,” ELCVIA : Electronic Letters on Computer Vision and Image Analysis, vol. 19, pp. 18–37, 2020, doi: 10.5565/rev/elcvia.1232.
[4] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music recommendation,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2013. Accessed: Jun. 08, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2013/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
[5] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural Collaborative Filtering,” in Proceedings of the 26th International Conference on World Wide Web, in WWW ’17. Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee, Apr. 2017, pp. 173–182. doi: 10.1145/3038912.3052569.
[6] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR: Bayesian personalized ranking from implicit feedback,” in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, in UAI ’09. Arlington, Virginia, USA: AUAI Press, Jun. 2009, pp. 452–461.
[7] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender algorithms on top-n recommendation tasks,” in Proceedings of the fourth ACM conference on Recommender systems, in RecSys ’10. New York, NY, USA: Association for Computing Machinery, Sep. 2010, pp. 39–46. doi: 10.1145/1864708.1864721.
[8] J. Wang, K. Ding, L. Hong, H. Liu, and J. Caverlee, “Next-item Recommendation with Sequential Hypergraphs,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, in SIGIR ’20. New York, NY, USA: Association for Computing Machinery, Jul. 2020, pp. 1101–1110. doi: 10.1145/3397271.3401133.
[9] S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun, and D. Lian, “A Survey on Session-based Recommender Systems,” ACM Comput. Surv., vol. 54, no. 7, p. 154:1-154:38, Jul. 2021, doi: 10.1145/3465401.
[10] J. Tang and K. Wang, “Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding,” in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, in WSDM ’18. New York, NY, USA: Association for Computing Machinery, Feb. 2018, pp. 565–573. doi: 10.1145/3159652.3159656.
[11] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, in KDD ’18. New York, NY, USA: Association for Computing Machinery, Jul. 2018, pp. 1831–1839. doi: 10.1145/3219819.3219950.
[12] M. Hosseinzadeh Aghdam, N. Hariri, B. Mobasher, and R. Burke, “Adapting Recommendations to Contextual Changes Using Hierarchical Hidden Markov Models,” in Proceedings of the 9th ACM Conference on Recommender Systems, in RecSys ’15. New York, NY, USA: Association for Computing Machinery, Sep. 2015, pp. 241–244. doi: 10.1145/2792838.2799684.
[13] Y. Wu, K. Li, G. Zhao, and X. Qian, “Long- and Short-term Preference Learning for Next POI Recommendation,” in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, in CIKM ’19. New York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 2301–2304. doi: 10.1145/3357384.3358171.
[14] D. Jannach, L. Lerche, and M. Jugovac, “Adaptation and Evaluation of Recommendations for Short-term Shopping Goals,” in Proceedings of the 9th ACM Conference on Recommender Systems, in RecSys ’15. New York, NY, USA: Association for Computing Machinery, Sep. 2015, pp. 211–218. doi: 10.1145/2792838.2800176.
[15] R. Devooght and H. Bersini, “Long and Short-Term Recommendations with Recurrent Neural Networks,” in Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, in UMAP ’17. New York, NY, USA: Association for Computing Machinery, Jul. 2017, pp. 13–21. doi: 10.1145/3079628.3079670.
[16] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based Recommendations with Recurrent Neural Networks.” arXiv, Mar. 29, 2016. doi: 10.48550/arXiv.1511.06939.
[17] W. Zhu, Y. Xie, Q. Huang, Z. Zheng, X. Fang, Y. Huang, and W. Sun, “Graph Transformer Collaborative Filtering Method for Multi-Behavior Recommendations,” Mathematics, vol. 10, no. 16, Art. no. 16, Jan. 2022, doi: 10.3390/math10162956.
[18] M. Kaminskas and D. Bridge, “Measuring Surprise in Recommender Systems,” Oct. 2014.
[19] Y. Guo, Y. Ling, and H. Chen, “A Neighbor-Guided Memory-Based Neural Network for Session-Aware Recommendation,” IEEE Access, vol. 8, pp. 120668–120678, 2020, doi: 10.1109/ACCESS.2020.3006360.
[20] W. Gu, S. Dong, and Z. Zeng, “Increasing recommended effectiveness with markov chains and purchase intervals,” Neural Comput & Applic, vol. 25, no. 5, pp. 1153–1162, Oct. 2014, doi: 10.1007/s00521-014-1599-8.
[21] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized Markov chains for next-basket recommendation,” in Proceedings of the 19th international conference on World wide web, in WWW ’10. New York, NY, USA: Association for Computing Machinery, Apr. 2010, pp. 811–820. doi: 10.1145/1772690.1772773.
[22] W. Chen and H. Chen, “Collaborative Co-Attention Network for Session-Based Recommendation,” Mathematics, vol. 9, no. 12, Art. no. 12, Jan. 2021, doi: 10.3390/math9121392.
[23] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural Attentive Session-based Recommendation,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, in CIKM ’17. New York, NY, USA: Association for Computing Machinery, Nov. 2017, pp. 1419–1428. doi: 10.1145/3132847.3132926.
[24] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph Neural Networks in Recommender Systems: A Survey,” ACM Comput. Surv., vol. 55, no. 5, p. 97:1-97:37, Dec. 2022, doi: 10.1145/3535101.
[25] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-Based Recommendation with Graph Neural Networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, Art. no. 01, Jul. 2019, doi: 10.1609/aaai.v33i01.3301346.
[26] C. Xu, P. Zhao, Y. Liu, V. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou, “Graph Contextualized Self-Attention Network for Session-based Recommendation,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China: International Joint Conferences on Artificial Intelligence Organization, Aug. 2019, pp. 3940–3946. doi: 10.24963/ijcai.2019/547.
[27] J. Yuan, Z. Song, M. Sun, X. Wang, and W. X. Zhao, “Dual Sparse Attention Network For Session-based Recommendation,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, Art. no. 5, May 2021, doi: 10.1609/aaai.v35i5.16593.
[28] Y. Yang, H.-J. Jang, and B. Kim, “A Hybrid Recommender System for Sequential Recommendation: Combining Similarity Models With Markov Chains,” IEEE Access, vol. 8, pp. 190136–190146, 2020, doi: 10.1109/ACCESS.2020.3027380.
[29] J. Huang, W. X. Zhao, H. Dou, J.-R. Wen, and E. Y. Chang, “Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks,” in The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, in SIGIR ’18. New York, NY, USA: Association for Computing Machinery, Jun. 2018, pp. 505–514. doi: 10.1145/3209978.3210017.
[30] Q. Cui, S. Wu, Q. Liu, W. Zhong, and L. Wang, “MV-RNN: A Multi-View Recurrent Neural Network for Sequential Recommendation,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 2, pp. 317–331, Feb. 2020, doi: 10.1109/TKDE.2018.2881260.
[31] W.-C. Kang and J. McAuley, “Self-Attentive Sequential Recommendation,” in 2018 IEEE International Conference on Data Mining (ICDM), Jan. 2018, pp. 197–206. doi: 10.1109/ICDM.2018.00035.
[32] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer,” in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, in CIKM ’19. New York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 1441–1450. doi: 10.1145/3357384.3357895.
[33] Z. Liu, Z. Fan, Y. Wang, and P. S. Yu, “Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, in SIGIR ’21. New York, NY, USA: Association for Computing Machinery, Jul. 2021, pp. 1608–1612. doi: 10.1145/3404835.3463036.
[34] S. Latifi, D. Jannach, and A. Ferraro, “Sequential recommendation: A study on transformers, nearest neighbors and sampled metrics,” Information Sciences, vol. 609, pp. 660–678, Sep. 2022, doi: 10.1016/j.ins.2022.07.079.
[35] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Beyond accuracy: evaluating recommender systems by coverage and serendipity,” in Proceedings of the fourth ACM conference on Recommender systems, in RecSys ’10. New York, NY, USA: Association for Computing Machinery, Sep. 2010, pp. 257–260. doi: 10.1145/1864708.1864761.
[36] R. J. Ziarani and R. Ravanmehr, “Serendipity in Recommender Systems: A Systematic Literature Review,” J. Comput. Sci. Technol., vol. 36, no. 2, pp. 375–396, Apr. 2021, doi: 10.1007/s11390-020-0135-9.
[37] R. J. Ziarani and R. Ravanmehr, “Deep neural network approach for a serendipity-oriented recommendation system,” Expert Systems with Applications, vol. 185, p. 115660, Dec. 2021, doi: 10.1016/j.eswa.2021.115660.
[38] M. Zhang, Y. Yang, R. Abbas, K. Deng, J. Li, and B. Zhang, “SNPR: A Serendipity-Oriented Next POI Recommendation Model,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, in CIKM ’21. New York, NY, USA: Association for Computing Machinery, Oct. 2021, pp. 2568–2577. doi: 10.1145/3459637.3482394.
[39] O. Barkan and N. Koenigstein, “ITEM2VEC: Neural item embedding for collaborative filtering,” in 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Sep. 2016, pp. 1–6. doi: 10.1109/MLSP.2016.7738886.
[40] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980.
指導教授 陳彥良 審核日期 2023-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明