參考文獻 |
ALFRHAN, A. A., ALHUSAIN, R. H., & Khan, R. U. (2020, September). SMOTE:
Class imbalance problem in intrusion detection system. In 2020 International
Conference on Computing and Information Technology (ICCIT-1441) (pp. 1-5).
IEEE.
Alsawalqah, H., Faris, H., Aljarah, I., Alnemer, L., & Alhindawi, N. (2017). Hybrid
SMOTE-ensemble approach for software defect prediction. In Software
Engineering Trends and Techniques in Intelligent Systems: Proceedings of the
6th Computer Science On-line Conference 2017 (CSOC2017), Vol 3 6 (pp. 355-
366). Springer International Publishing.
Bagheri, E., & Gasevic, D. (2011). Assessing the maintainability of software product line
feature models using structural metrics. Software Quality Journal, 19, 579-612.
Barua, S., Islam, M. M., & Murase, K. (2013). ProWSyn: Proximity weighted synthetic
oversampling technique for imbalanced data set learning. In Advances in
Knowledge Discovery and Data Mining: 17th Pacific-Asia Conference, PAKDD
2013, Gold Coast, Australia, April 14-17, 2013, Proceedings, Part II 17 (pp.
317-328). Springer Berlin Heidelberg.
Bashir, K., Ali, T., Yahaya, M., & Hussein, A. S. (2019, November). A hybrid data
preprocessing technique based on maximum likelihood logistic regression with
filtering for enhancing software defect prediction. In 2019 IEEE 14th
International Conference on Intelligent Systems and Knowledge Engineering
(ISKE) (pp. 921-927). IEEE.
Yohannese, C. W., & Mahama, Y. (2017, November). Enhancing
software defect prediction using supervised-learning based framework. In 2017
12th International Conference on Intelligent Systems and Knowledge
Engineering (ISKE) (pp. 1-6). IEEE.
Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD
explorations newsletter, 6(1), 20-29.
Bennin, K. E., Keung, J. W., & Monden, A. (2019). On the relative value of data
resampling approaches for software defect prediction. Empirical Software
Engineering, 24(2), 602-636.
Bennin, K. E., Keung, J., Phannachitta, P., Monden, A., & Mensah, S. (2017). Mahakil:
Diversity based oversampling approach to alleviate the class imbalance issue in
software defect prediction. IEEE Transactions on Software Engineering, 44(6),
534-550.
Broniatowski, D. A., & Tucker, C. (2017). Assessing causal claims about complex
engineered systems with quantitative data: internal, external, and construct
validity. Systems Engineering, 20(6), 483-496.
Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class
imbalance problem in convolutional neural networks. Neural networks, 106, 249-
259.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16, 321-357.
Chen, L., Fang, B., Shang, Z., & Tang, Y. (2018). Tackling class overlap and imbalance
problems in software defect prediction. Software Quality Journal, 26, 97-125.
Chen, S., Liu, M., Liu, T., & Li, J. (2021, March). Urban land use simulation based on
ProWSyn-MLP-CA. In IOP Conference Series: Earth and Environmental
Science (Vol. 692, No. 4, p. 042020). IOP Publishing.
Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., & Yang, B. (2018). Machine
learning based mobile malware detection using highly imbalanced network
traffic. Information Sciences, 433, 346-364.
Chen, X., Kang, Q., Zhou, M., & Wei, Z. (2016, August). A novel under-sampling
algorithm based on iterative-partitioning filters for imbalanced classification.
In 2016 IEEE International Conference on Automation Science and Engineering
(CASE) (pp. 490-494). IEEE.
Chen, X., Kang, Q., Zhou, M., & Wei, Z. (2016, August). A novel under-sampling
algorithm based on iterative-partitioning filters for imbalanced classification.
In 2016 IEEE International Conference on Automation Science and Engineering
(CASE) (pp. 490-494). IEEE.
Douzas, G., Bacao, F., & Last, F. (2018). Improving imbalanced learning through a
heuristic oversampling method based on k-means and SMOTE. Information
Sciences, 465, 1-20.
Elreedy, D., & Atiya, A. F. (2019). A comprehensive analysis of synthetic minority
oversampling technique (SMOTE) for handling class imbalance. Information
Sciences, 505, 32-64.
El-Shorbagy, S. A., El-Gammal, W. M., & Abdelmoez, W. M. (2018, May). Using
SMOTE and heterogeneous stacking in ensemble learning for software defect
prediction. In Proceedings of the 7th International Conference on Software and
Information Engineering (pp. 44-47).
Feng, S., Keung, J., Yu, X., Xiao, Y., & Zhang, M. (2021). Investigation on the stability
of SMOTE-based oversampling techniques in software defect
prediction. Information and Software Technology, 139, 106662.
Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning
from imbalanced data: progress and challenges, marking the 15-year
anniversary. Journal of artificial intelligence research, 61, 863-905.
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). A review
on ensembles for the class imbalance problem: bagging-, boosting-, and hybridbased approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(4), 463-484.
Garcia, L. P., Lehmann, J., de Carvalho, A. C., & Lorena, A. C. (2019). New label noise
injection methods for the evaluation of noise filters. Knowledge-Based
Systems, 163, 693-704.
Gazzah, S., & Amara, N. E. B. (2008, September). New oversampling approaches based
on Polynomial fitting for imbalanced data sets. In 2008 the eighth iapr
international workshop on document analysis systems (pp. 677-684). IEEE.
Ghotra, B., McIntosh, S., & Hassan, A. E. (2015, May). Revisiting the impact of
classification techniques on the performance of defect prediction models. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (Vol.
1, pp. 789-800). IEEE.
Gong, L., Jiang, S., & Jiang, L. (2019). Tackling class imbalance problem in software
defect prediction through cluster-based over-sampling with filtering. IEEE
Access, 7, 145725-145737.
Gondra, I. (2008). Applying machine learning to software fault-proneness
prediction. Journal of Systems and Software, 81(2), 186-195.
Goyal, S. (2022). Handling class-imbalance with KNN (neighbourhood) under-sampling
for software defect prediction. Artificial Intelligence Review, 55(3), 2023-2064.
Guo, Y., Jiang, X., Tao, L., Meng, L., Dai, C., Long, X., Chen, C. (2022). Epileptic
seizure detection by cascading isolation forest-based anomaly screening and
EasyEnsemble. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 30, 915-924.
Hall, T., & Bowes, D. (2012, December). The state of machine learning methodology in
software fault prediction. In 2012 11th international conference on machine
learning and applications (Vol. 2, pp. 308-313). IEEE
Han, M., Guo, H., Li, J., & Wang, W. (2022). Global-local information based
oversampling for multi-class imbalanced data. International Journal of Machine
Learning and Cybernetics, 1-16.
Han, W., Huang, Z., Li, S., & Jia, Y. (2019). Distribution-sensitive unbalanced data
oversampling method for medical diagnosis. Journal of medical Systems, 43, 1-
10.
Huda, S., Liu, K., Abdelrazek, M., Ibrahim, A., Alyahya, S., Al-Dossari, H., & Ahmad,
S. (2018). An ensemble oversampling model for class imbalance problem in
software defect prediction. IEEE access, 6, 24184-24195.
Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L., Ahmad, M., & Husen, A. (2019).
Performance analysis of machine learning techniques on software defect
prediction using NASA datasets. International Journal of Advanced Computer
Science and Applications, 10(5).
Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class
imbalance. Journal of Big Data, 6(1), 1-54.
Kang, Q., Chen, X., Li, S., & Zhou, M. (2016). A noise-filtered under-sampling scheme
for imbalanced classification. IEEE transactions on cybernetics, 47(12), 4263-
4274.
Kaur, H., Pannu, H. S., & Malhi, A. K. (2019). A systematic review on imbalanced data
challenges in machine learning: Applications and solutions. ACM Computing
Surveys (CSUR), 52(4), 1-36.
Kitchenham, B., Pickard, L., & Pfleeger, S. L. (1995). Case studies for method and tool
evaluation. IEEE software, 12(4), 52-6
Kovács, G. (2019). An empirical comparison and evaluation of minority oversampling
techniques on a large number of imbalanced datasets. Applied Soft
Computing, 83, 105662.
Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using
ensemble learning on selected features. Information and Software
Technology, 58, 388-402.
Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018). A survey on
addressing high-class imbalance in big data. Journal of Big Data, 5(1), 1-30.
Liang, J., Bai, L., Dang, C., & Cao, F. (2012). The K-means-type algorithms versus
imbalanced data distributions. IEEE Transactions on Fuzzy Systems, 20(4), 728-
745.
Lin, C., Tsai, C. F., & Lin, W. C. (2023). Towards hybrid over-and under-sampling
combination methods for class imbalanced datasets: an experimental
study. Artificial Intelligence Review, 56(2), 845-863.
Lingden, P., Alsadoon, A., Prasad, P. W. C., Alsadoon, O. H., Ali, R. S., & Nguyen, V.
T. Q. (2019). A novel modified undersampling (MUS) technique for software
defect prediction. Computational Intelligence, 35(4), 1003-1020.
Lin, W. C., Tsai, C. F., Hu, Y. H., & Jhang, J. S. (2017). Clustering-based
undersampling in class-imbalanced data. Information Sciences, 409, 17-26.
Liu, T. (2016, November). Fault diagnosis of gearbox by selective ensemble learning
based on artificial immune algorithm. In 2016 3rd International Conference on
Systems and Informatics (ICSAI) (pp. 460-464). IEEE.
Malhotra, R. (2016). Empirical research in software engineering: concepts, analysis,
and applications. Book, Chapman and Hall/CRC press.
Malhotra, R. (2015). A systematic review of machine learning techniques for software
fault prediction. Applied Soft Computing, 27, 504-518.
Odejide, B. J., Bajeh, A. O., Balogun, A. O., Alanamu, Z. O., Adewole, K. S., Akintola,
A. G., Mojeed, H. A. (2022). An Empirical Study on Data Sampling Methods in
Addressing Class Imbalance Problem in Software Defect Prediction. In Computer
Science On-line Conference (pp. 594-610). Springer, Cham.
Pelayo, L., & Dick, S. (2012). Evaluating stratification alternatives to improve software
defect prediction. IEEE transactions on reliability, 61(2), 516-525.
Qazi, A. W., Saqib, Z., & Zaman-ul-Haq, M. (2022). Trends in species distribution
modelling in context of rare and endemic plants: A systematic review. Ecological
Processes, 11(1), 1-11.
Radjenović, D., Heričko, M., Torkar, R., & Živkovič, A. (2013). Software fault
prediction metrics: A systematic literature review. Information and software
technology, 55(8), 1397-1418.
Rao, K. N., & Reddy, C. S. (2020). A novel under sampling strategy for efficient
software defect analysis of skewed distributed data. Evolving Systems, 11, 119-
131.
Rathore, S. S., & Kumar, S. (2017). A decision tree logic based recommendation system
to select software fault prediction techniques. Computing, 99, 255-285.
Reza, M. S., & Ma, J. (2018, August). Imbalanced histopathological breast cancer image
classification with convolutional neural network. In 2018 14th IEEE
International Conference on Signal Processing (ICSP) (pp. 619-624). IEEE.
Rhmann, W., Pandey, B., Ansari, G., & Pandey, D. K. (2020). Software fault prediction
based on change metrics using hybrid algorithms: An empirical study. Journal of
King Saud University-Computer and Information Sciences, 32(4), 419-424.
Riaz, S., Arshad, A., & Jiao, L. (2018). Rough noise-filtered easy ensemble for software
fault prediction. Ieee Access, 6, 46886-46899.
Robinson, O. J., Ruiz‐Gutierrez, V., & Fink, D. (2018). Correcting for bias in
distribution modelling for rare species using citizen science data. Diversity and
Distributions, 24(4), 460-472.
Sáez, J. A., Galar, M., Luengo, J., & Herrera, F. (2016). INFFC: An iterative class noise
filter based on the fusion of classifiers with noise sensitivity control. Information
Fusion, 27, 19-32.
Sáez, J. A., Luengo, J., Stefanowski, J., & Herrera, F. (2015). SMOTE–IPF: Addressing
the noisy and borderline examples problem in imbalanced classification by a resampling method with filtering. Information Sciences, 291, 184-203.
Sáez, J. A., Galar, M., Luengo, J., & Herrera, F. (2013). Tackling the problem of
classification with noisy data using multiple classifier systems: Analysis of the
performance and robustness. Information Sciences, 247, 1-20
Sanjaya, S., Abdillah, R., & Afrianty, I. (2022, October). The impact of Under-Sampling
Techniques on Classification Accuracy in multi-class Imbalance Data. In 2022
3rd International Conference on Electrical Engineering and Informatics (ICon
EEI) (pp. 92-97). IEEE.
Santos, M. S., Soares, J. P., Abreu, P. H., Araujo, H., & Santos, J. (2018). Crossvalidation for imbalanced datasets: avoiding overoptimistic and overfitting
approaches [research frontier]. ieee ComputatioNal iNtelligeNCe
magaziNe, 13(4), 59-76.
Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Folleco, A. (2014). An empirical
study of the classification performance of learners on imbalanced and noisy
software quality data. Information Sciences, 259, 571-595
Shin, J., Yoon, S., Kim, Y., Kim, T., Go, B., & Cha, Y. (2021). Effects of class
imbalance on resampling and ensemble learning for improved prediction of
cyanobacteria blooms. Ecological informatics, 61, 101202.
Soe, Y. N., Santosa, P. I., & Hartanto, R. (2019, October). Ddos attack detection based
on simple ann with smote for iot environment. In 2019 fourth international
conference on informatics and computing (ICIC) (pp. 1-5). IEEE.
Trochim, W. M., & Donnelly, J. P. (2001). Research methods knowledge base (Vol. 2).
Macmillan Publishing Company, New York: Atomic Dog Pub.
Tsai, C. F., Lin, W. C., Hu, Y. H., & Yao, G. T. (2019). Under-sampling class
imbalanced datasets by combining clustering analysis and instance
selection. Information Sciences, 477, 47-54.
Van Hulse, J., Khoshgoftaar, T. M., & Napolitano, A. (2010, December). A novel noise
filtering algorithm for imbalanced data. In 2010 Ninth International Conference
on Machine Learning and Applications (pp. 9-14). IEEE.
Vuttipittayamongkol, P., & Elyan, E. (2020). Neighbourhood-based undersampling
approach for handling imbalanced and overlapped data. Information
Sciences, 509, 47-70.
Wahab, N., Khan, A., & Lee, Y. S. (2017). Two-phase deep convolutional neural
network for reducing class skewness in histopathological images based breast
cancer detection. Computers in biology and medicine, 85, 86-97.
Wahono, R. S. (2015). A systematic literature review of software defect
prediction. Journal of software engineering, 1(1), 1-16.
u, W., & Liu, C. (2022). Imbalanced heartbeat classification using
EasyEnsemble technique and global heartbeat information. Biomedical Signal
Processing and Control, 71, 103105.
Wang, Y., Pan, Z., Zheng, J., Qian, L., & Li, M. (2019). A hybrid ensemble method for
pulsar candidate classification. Astrophysics and Space Science, 364, 1-13.
Wang, S., & Yao, X. (2013). Using class imbalance learning for software defect
prediction. IEEE Transactions on Reliability, 62(2), 434-443.
Wang, S., Li, Z., Chao, W., & Cao, Q. (2012, June). Applying adaptive over-sampling
technique based on data density and cost-sensitive SVM to imbalanced learning.
In The 2012 international joint conference on neural networks (IJCNN) (pp. 1-8).
IEEE.
Wardhani, N. W. S., Rochayani, M. Y., Iriany, A., Sulistyono, A. D., & Lestantyo, P.
(2019, October). Cross-validation metrics for evaluating classification
performance on imbalanced data. In 2019 International conference on computer,
control, informatics and its applications (IC3INA) (pp. 14-18). IEEE.
Wu, Z., Lin, W., & Ji, Y. (2018). An integrated ensemble learning model for imbalanced
fault diagnostics and prognostics. IEEE Access, 6, 8394-8402.
Xu, Z., Shen, D., Nie, T., & Kou, Y. (2020). A hybrid sampling algorithm combining MSMOTE and ENN based on random forest for medical imbalanced data. Journal
of Biomedical Informatics, 107, 103465.
Yen, S. J., & Lee, Y. S. (2009). Cluster-based under-sampling approaches for
imbalanced data distributions. Expert Systems with Applications, 36(3), 5718-
5727.
Zhang, C., Tan, K. C., Li, H., & Hong, G. S. (2018). A cost-sensitive deep belief
network for imbalanced classification. IEEE transactions on neural networks and
learning systems, 30(1), 109-122.
Zhang, H., Huang, L., Wu, C. Q., & Li, Z. (2020). An effective convolutional neural
network based on SMOTE and Gaussian mixture model for intrusion detection in
imbalanced dataset. Computer Networks, 177, 107315.
Zhu, Y., Yan, Y., Zhang, Y., & Zhang, Y. (2020). EHSO: Evolutionary Hybrid Sampling
in overlapping scenarios for imbalanced learning. Neurocomputing, 417, 333-
346. |