博碩士論文 110423072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.226.163.23
姓名 邱冠融(Kuan-Jung Chiu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 探討團隊適應對於軟體流程調適決策有效性之影響:共享心智模型之調節作用
(The Effects of Team Adaptation of Software Project Teams on Process Tailoring Effectiveness: The Moderating Role of Shared Mental Model)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 由於每個軟體專案的易變性,以致不存在一套完全適用於所有專案的標準軟體流程。因此,專案團隊必須執行軟體流程調適,依照專案不同變化的特性調整流程以滿足其特定專案或組織的需求。然而在這種頻繁變化的環境中,團隊適應是否會影響流程調適的有效性,相關文獻仍匱乏。因此,本研究探討團隊先發與即時適應對流程調適有效性的影響。當團隊面臨專案中的變化與風險時,團隊透過先發適應,提前制定應對的調適計畫並執行之;透過即時適應,立刻制定且執行調適計畫。此外,團隊透過共享心智模型,使團隊能正確、完整地執行調適計畫,有效地降低風險與變化帶給團隊與專案的影響。
綜合前述,本研究提出一理論模型探討團隊即時適應以及先發適應與軟體流程調適有效性間的關係,並透過共享心智模型調節。本研究以定量的問卷調查方法進行調查,其中有效問卷為團隊領導者與團隊成員樣本合併後之結果,共100份,並採偏最小平方法 (Partial Least Square) 對資料做分析並檢視假說。研究結果顯示,團隊先發、即時適應與軟體流程調適有效性呈正關係;共享心智模型正向調節團隊即時適應與軟體流程調適有效性之間的關係。此外,本研究亦針對不顯著之假說做解釋,並於文末提出此研究的限制,建議未來研究可進行的方向。
摘要(英) Due to the variability of each software project, there is no general standard software process that can be universally applied. Consequently, software teams are required to engage in software process tailoring (SPT), adjusting the processes to meet the specific needs or changes of their particular projects. There is a lack of literature on whether team adaptation affects the effectiveness of SPT. Hence, this study focuses on examining the impact of team improvised adaptation and team preemptive adaptation on SPT effectiveness. When teams encounter changes and risks in the project, they develop and implement coping plans immediately through team improvised adaptation. Additionally, through the use of shared mental models, the teams are able to execute coping plans accurately and comprehensively, effectively mitigating the impact of risks on the team and the project.
Drawing upon the preceding discussions, this study proposes a theoretical model to investigate the relationship between team improvised adaptation, team preemptive adaptation, and the SPT effectiveness, moderated by the shared mental models. To examine the model, this research uses the survey method to quantitatively collect the data of 100 responses from 42 software teams and analyze the data by using Partial Least Square (PLS). The results show that team improvised and preemptive adaptation have positive influences on SPT effectiveness; Shared mental models positively moderate the relationship between team improvised adaptation and the SPT effectiveness. In addition, this study explains the non-significant hypotheses and presents the limitations of this study, suggesting possible directions for future research.
關鍵字(中) ★ 軟體流程調適
★ 團隊先發適應
★ 團隊即時適應
★ 共享心智模型
★ 軟體流程調適有效性
關鍵字(英) ★ Software Process Tailoring (SPT)
★ Team Preemptive Adaptation
★ Team Improvised Adaptation
★ Shared Mental Models
★ SPT effectiveness
論文目次 目錄

摘要........................................................................................................................i
Abstract................................................................................................................ii
誌謝......................................................................................................................iii
目錄......................................................................................................................iv
圖目錄..................................................................................................................vi
表目錄.................................................................................................................vii
第一章、 緒論...............................................................................................1
1-1. 研究背景與研究問題.................................................................................................1
1-2. 研究目的與方法.........................................................................................................4
1-3. 研究範圍與假說.........................................................................................................5
1-4. 研究架構.....................................................................................................................5
第二章、 文獻探討.......................................................................................7
2-1. 軟體流程調適與其有效性.........................................................................................7
2-2. 團隊適應 (Team Adaptation) ..................................................................................10
2-3. 共享心智模型 (Shared Mental Model) ...................................................................16
第三章、 研究假說與模型.........................................................................19
3-1. 團隊先發適應與SPT有效性...................................................................................19
3-2. 團隊即時適應與SPT有效性...................................................................................20
3-3. 共享心智模型對SPT有效性的調節作用...............................................................21
第四章、 研究方法.....................................................................................25
4-1. 資料樣本與蒐集.......................................................................................................25
4-2. 變數定義...................................................................................................................27
4-3. 問卷設計...................................................................................................................28
4-4. 資料分析與方法.......................................................................................................31
4-5. 樣本數需求分析.......................................................................................................32
第五章、 資料分析與結果.........................................................................34
5-1. 樣本結構分析...........................................................................................................34
5-2. 樣本特徵分析...........................................................................................................35
5-3. 資料聚合...................................................................................................................39
5-4. 測量模型分析...........................................................................................................40
5-5. 結構模型分析...........................................................................................................45
5-6. 調節效果分析...........................................................................................................49
第六章、 結果與討論.................................................................................51
6-1. 結果討論...................................................................................................................51
6-2. 理論貢獻...................................................................................................................55
6-3. 實務意涵...................................................................................................................56
第七章、 結論.............................................................................................58
7-1. 研究限制與未來發展...............................................................................................58
7-2. 總結...........................................................................................................................59
參考文獻.............................................................................................................61
附錄一、問卷量表...............................................................................................74

圖目錄

圖1 研究架構圖........................................................................................................................6
圖2 研究模型..........................................................................................................................24
圖3 顯著性分析結果..............................................................................................................46
圖4 共享心智模型*團隊即時適應之調節效果圖................................................................50
圖5 共享心智模型*團隊先發適應之調節效果圖................................................................50

表目錄

表1 影響SPT績效因素的相關研究........................................................................................9
表2 團隊適應定義相關文獻..................................................................................................11
表3 團隊適應前因相關文獻..................................................................................................12
表4 團隊適應對績效相關文獻..............................................................................................14
表5 變數定義..........................................................................................................................27
表6 本研究問卷之問項內容及其參考文獻..........................................................................28
表7 2011-2020年研究採用PLS-SEM原因............................................................................32
表8 樣本中同一團隊填寫人數..............................................................................................34
表9 團隊成員樣本特徵..........................................................................................................35
表10 團隊領導者樣本特徵....................................................................................................36
表11 企業特徵........................................................................................................................37
表12 團隊特徵........................................................................................................................38
表13 各變數之ICC(1)、ICC(2)與Rwg值..........................................................................39
表14 測量模型之結果............................................................................................................41
表15 平均變異萃取量平方根值模型中其他構念的相關係數............................................41
表16 HTMT 值........................................................................................................................43
表17 本研究之 VIFs 值........................................................................................................45
表18 假說驗證之結果............................................................................................................46
表19 結構模型中f2值.............................................................................................................47
表20 PLSpredict 分析結果.....................................................................................................48
參考文獻 1.Abrantes, A. C. M., Passos, A. M., e Cunha, M. P., & Santos, C. M. (2018). Bringing team improvisation to team adaptation: The combined role of shared temporal cognitions and team learning behaviors fostering team performance. Journal of Business Research, 84, 59-71.
2.Abrantes, A. C. M., Passos, A. M., Pina e Cunha, M., & Miner, A. S. (2020). Managing the unforeseen when time is scarce: How temporal personality and team improvised adaptation can foster team performance. Group Dynamics: Theory, Research, and Practice, 24(1), 42-58.
3.Abrantes, A. C., Passos, A. M., Cunha, M. P. E., & Santos, C. M. (2022). Getting the knack for team-improvised adaptation: The role of reflexivity and team mental model similarity. The Journal of Applied Behavioral Science, 58(2), 281-315.
4.Akbar, R. (2019), “Tailoring agile-based software development processes”, IEEE Access, Vol. 7, 139852-139869.
5. Alegria, J.A., Bastarrica, M.C., Quispe, A. and Ochoa, S.F. (2014), “MDE-based process tailoring strategy”, Journal of Software: Evolution and Process, Vol. 26 No. 4, pp. 386-403.
6.Baard, S. K., Rench, T. A., & Kozlowski, S. W. (2014). Performance adaptation: A theoretical integration and review. Journal of Management, 40(1), 48-99.
7.Bass, J. M. (2016). Artefacts and agile method tailoring in large-scale offshore software development programmes. Information and software technology, 75, 1-16.
8.Beersma, B., Hollenbeck, J. R., Conlon, D. E., Humphrey, S. E., Moon, H., & Ilgen, D. R. (2009). Cutthroat cooperation: The effects of team role decisions on adaptation to alternative reward structures. Organizational Behavior and Human Decision Processes, 108, 131–142.
9.Bowers, J., May, J., Melander, E., Baarman, M., & Ayoob, A. (2002, August). Tailoring XP for large system mission critical software development. In Conference on Extreme Programming and Agile Methods (pp. 100-111). Berlin, Heidelberg: Springer.
10.Burke, C. S., Stagl, K. C., Salas, E., Pierce, L., & Kendall, D. (2006). Understanding team adaptation: a conceptual analysis and model. Journal of Applied Psychology, 91(6), 1189-1207.
11. Burke, C. S., Pierce, L. G. and Salas, E. (2006). Understanding Adaptability: A Prerequisite for Effective Performance within Complex Environments (Advances in Human Performance and Cognitive Engineering Research, Vol. 6), Emerald Group Publishing Limited, Bingley, 117-141.
12.Burtscher, M. J., Manser, T., Kolbe, M., Grote, G., Grande, B., Spahn, D. R., & Wacker, J. (2011). Adaptation in anaesthesia team coordination in response to a simulated critical event and its relationship to clinical performance. British Journal of Anaesthesia, 106, 801– 806.
13.Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods tailoring–A systematic literature review. Journal of Systems and Software, 110, 85-100.
14.Campanelli, A. S., Camilo, R. D., & Parreiras, F. S. (2018). The impact of tailoring criteria on agile practices adoption: A survey with novice agile practitioners in Brazil. Journal of Systems and Software, 137, 366-379.
15.Cannon‐Bowers, J. A., & Salas, E. (2001). Reflections on shared cognition. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 22(2), 195-202.
16.Chen, C. Y., Hsu, P. Y., & Vu, H. N. (2023). Collaborative process tailoring in evolutionary software development: a teamwork-quality perspective. Software Quality Journal, 31(1), 89-119.
17.Cannon-Bowers, J. A., Salas, E., & Converse, S. (1993). Shared mental models in expert team decision making. In N. J. Castellan, Jr. (Ed.), Individual and group decision making: Current issues (221–246). Lawrence Erlbaum Associates, Inc.
18.Cannon-Bowers, J. A., Tannenbaum, S. I., Salas, E., & Volpe, C. E. (1995). Defining competencies and establishing team training requirements. Team effectiveness and decision making in organizations, 333–380.
19.Chen, C. Y., & Lee, J. C. (2023). Exploring Teams′ Temporal Factors for Determining Process Tailoring that Promotes the Evolution of Agile based Software Development. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 54(1), 46-65.
20.Chen, P. C., Lee, J. C., & Chen, C. Y. (2021). A Preliminary Study of Transactive Memory System and Shared Temporal Cognition in the Collaborative Software Process Tailoring. In Advances in Software Engineering, Education, and e-Learning: Proceedings from FECS′20, FCS′20, SERP′20, and EEE′20 (523-531). Springer International Publishing.
21.Christian, J. S., Christian, M. S., Pearsall, M. J., & Long, E. C. (2017). Team adaptation in context: An integrated conceptual model and meta-analytic review. Organizational Behavior and Human Decision Processes, 140, 62-89.
22.Crawford, B., Soto, R., de la Barra, C. L., Crawford, K., & Olguín, E. (2014). Agile software teams can use conflict to create a better products. In HCI International 2014-Posters’ Extended Abstracts: International Conference, HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014. Proceedings, Part I 16 , 24-29.
23.Crossan, M., Cunha, M. P. E., Vera, D., & Cunha, J. (2005). Time and organizational improvisation. Academy of Management Review, 30(1), 129-145.
24.Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.
25.Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS quarterly, vii-xvi.
26.Cheong, M., Yammarino, F. J., Dionne, S. D., Spain, S. M., & Tsai, C. Y. (2019). A review of the effectiveness of empowering leadership. The Leadership Quarterly, 30(1), 34-58.
27.De Wit, F. R. C., Greer, L. L., & Jehn, K. A. (2012). The paradox of intragroup conflict: A meta-analysis. Journal of Applied Psychology, 97(2), 360–390.
28.DeChurch, L. A., & Haas, C. D. (2008). Examining team planning through an episodic lens: Effects of deliberate, contingency, and reactive planning on team effectiveness. Small Group Research, 39(5), 542–568.
29.DeRue, D. S., Hollenbeck, J. R., Johnson, M. D., Ilgen, D. R., & Jundt, D. K. (2008). How different team downsizing approaches influence team-level adaptation and performance. Academy of Management Journal, 51, 182–196.
30.Dawson, J. F. (2014). Moderation in management research: What, why, when, and how. Journal of business and psychology, 29(1), 1-19.
31.Edgar, L., Jones Jr, M. D., Harsy, B., Passiment, M., & Hauer, K. E. (2021). Better decision-making: shared mental models and the clinical competency committee. Journal of Graduate Medical Education, 13(2s), 51-58.
32.Epstein, J., Santo, R. M., & Guillemin, F. (2015). A review of guidelines for crosscultural adaptation of questionnaires could not bring out a consensus. Journal of Clinical Epidemiology, 68(4), 435-441.
33.Espinosa, A., Kraut, R., Slaughter, S., Lerch, J., Herbsleb, J., & Mockus, A. (2002). Shared mental models, familiarity, and coordination: A multi-method study of distributed software teams. ICIS 2002 Proceedings, 39.
34.Evans, J. M., Palmer, K. S., Brown, A. D., Marani, H., Russell, K. K., Martin, D., & Ivers, N. M. (2019). Out of sync: a Shared Mental Models perspective on policy implementation in healthcare. Health Research Policy and Systems, 17(1), 1-6.
35.Eldor, L., & Harpaz, I. (2016). A process model of employee engagement: The learning climate and its relationship with extra-role performance behaviors. Journal of Organizational Behavior, 37(2), 213-235.
36.Edwards, J. R. (2001). Multidimensional constructs in organizational behavior research: An integrative analytical framework. Organizational Research Methods, 4(2), 144-192.
37.Eschleman, K. J., Mathieu, M., & Cooper, J. (2017). Creating a recovery filled weekend: The moderating effect of occupation type on the relationship between non-work creative activity and state of feeling recovered at work. Creativity Research Journal, 29(2), 97-107.
38.F. Tripp, J., & Armstrong, D. J. (2018). Agile methodologies: organizational adoption motives, tailoring, and performance. Journal of Computer Information Systems, 58(2), 170-179.
39.Fitzgerald, B., Russo, N. L., & O′Kane, T. (2003). Software development method tailoring at Motorola. Communications of the ACM, 46(4), 64-70.
40.Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common methods variance detection in business research. Journal of business research, 69(8), 3192-3198.
41.Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388.
42.Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. University of Akron Press.
43.Gerow, J. E., Grover, V., Thatcher, J. B., & Roth, P. L. (2014). Looking toward the future of IT-business strategic alignment through the past: A meta-analysis. MIS Quarterly, 38(4), 1059–1085.
44.Ginsberg, M. P., & Quinn, L. H. (1995). Process tailoring and the software capability maturity model. Technical Report CMU/SEI-94-TR-024. Software Engineering Institute, Pittsburgh, PA.
45.Goodhue, D., Lewis, W., & Thompson, R. (2007). Research note—Statistical power in analyzing interaction effects: Questioning the advantage of PLS with product indicators. Information Systems Research, 18(2), 211-227.
46.Gurtner, A., Tschan, F., Semmer, N. K., & Nägele, C. (2007). Getting groups to develop good strategies: Effects of reflexivity interventions on team process, team performance, and shared mental models. Organizational Behavior and Human Decision Processes, 102(2), 127-142.
47.Goodhue, D., Lewis, W., & Thompson, R. (2006, January). PLS, small sample size, and statistical power in MIS research. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS′06) (Vol. 8, pp. 202b-202b). IEEE.
48.Haig, K. M., Sutton, S., & Whittington, J. (2006). SBAR: a shared mental model for improving communication between clinicians. The joint commission journal on quality and patient safety, 32(3), 167-175.
49.Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31, 2-24.
50.Humphrey, W. S., Snyder, T. R., & Willis, R. R. (1991). Software process improvement at Hughes Aircraft. IEEE software, 8(4), 11-23.
51.Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027.
52.Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Thousand Oaks, CA: Sage
53.Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
54.Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
55.Hair Jr, J. F., Sarstedt, M., Matthews, L. M., & Ringle, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I–method. European Business Review, 28(1), 63-76.
56.Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
57.Hanssen, G. K., Westerheim, H., & Bjørnson, F. O. (2005, June). Tailoring RUP to a defined project type: A case study. In International Conference on Product Focused Software Process Improvement (pp. 314-327). Berlin, Heidelberg: Springer.
58.Jones, N. A., Ross, H., Lynam, T., Perez, P., & Leitch, A. (2011). Mental models: an interdisciplinary synthesis of theory and methods. Ecology and society, 16(1), 46-46.
59.Kearns, G. S., & Sabherwal, R. (2006). Strategic alignment between business and information technology: A knowledge-based view of behaviors, outcome, and consequences. Journal of Management Information Systems, 23(3), 129–162.
60.Klimoski, R., & Mohammed, S. (1994). Team mental model: Construct or metaphor?. Journal of management, 20(2), 403-437.
61.Kude, T., Mithas, S., Schmidt, C. T., & Heinzl, A. (2019). How pair programming influences team performance: The role of backup behavior, shared mental models, and task novelty. Information Systems Research, 30(4), 1145-1163.
62.Kozlowski, S. W. J., Gully, S. M., Nason, E. R., & Smith, E. M. (1999). Developing adaptive teams: A theory of compilation and performance across levels and time. In D. R. Ilgen & E. D. Pulakos (Eds.), The changing nature of performance: Implications for staffing, motivation, and development (pp. 240 –292). San Francisco, CA: Jossey-Bass
63.Kock, N. (2017). Common method bias: a full collinearity assessment method for PLS-SEM. Partial least squares path modeling: Basic concepts, methodological issues and applications, 245-257.
64.Lai, J.-M., Lee, G.-G., & Hsu, W.-L. (2009). The influence of Partner’s trust-commitment relationship on electronic commerce strategic planning. Management Decision, 47(3), 491–507.
65.Langan‐Fox, J., Anglim, J., & Wilson, J. R. (2004). Mental models, team mental models, and performance: Process, development, and future directions. Human Factors and Ergonomics in Manufacturing & Service Industries, 14(4), 331-352.
66.Lee, J. C. and Chen, C. Y. (2020), "Exploring the team dynamic learning process in software process tailoring performance: A theoretical perspective", Journal of Enterprise Information Management, Vol. 33 No. 3, pp. 502-518.
67.Lee, J. C., & Chen, C. Y. (2022). Exploring the effects of team coordination and power distance on effective software process tailoring: a theoretical perspective. Information Technology & People, 35(3), 1009-1028.
68.Lee, J. C., & Chen, C. Y. (2022). Motivating members’ involvement to effectually conduct collaborative software process tailoring. Empirical Software Engineering, 27(7), 183.
69.Lee, J. C., Chou, I. C., & Chen, C. Y. (2021). The effect of process tailoring on software project performance: the role of team absorptive capacity and its knowledge‐based enablers. Information systems journal, 31(1), 120-147.
70.Lee, J. C., Shiue, Y. C., & Chen, C. Y. (2020). An integrated model of the knowledge antecedents for exploring software process improvement success. Journal of Enterprise Information Management, 33(6), 1537-1556.
71.Lee, J. C., Wang, Y. T., & Chen, C. Y. (2020). The effect of transactive memory systems on process tailoring in software projects: The moderating role of task conflict and shared temporal cognitions. Journal of Systems and Software, 164, 110545.
72.LePine, J. A. (2003). Team adaptation and postchange performance: Effects of team composition in terms of members′ cognitive ability and personality. Journal of Applied Psychology, 88(1), 27–39.
73.LePine, J. A. (2005). Adaptation of teams in response to unforeseen change: Effects of goal difficulty and team composition in terms of cognitive ability and goal orientation. Journal of Applied Psychology, 90(6), 1153–1167.
74.Levesque, L. L., Wilson, J. M., & Wholey, D. R. (2001). Cognitive divergence and shared mental models in software development project teams. Journal of Organizational Behavior, 22(2), 135-144.
75.Lim B-C, Klein KJ. Team mental models and team performance: a field study of the effects of team mental model similarity and accuracy. J Organ Behav. 2006;27(4):403–418.
76.Manser, T., Howard, S. K., & Gaba, D. M. (2008). Adaptive coordination in cardiac anaesthesia: A study of situational changes in coordination patterns using a new observation system. Ergonomics, 51(8), 1153–1178.
77.Marks, M. A., Zaccaro, S. J., & Mathieu, J. E. (2000). Performance implications of leader briefings and team-interaction training for team adaptation to novel environments. Journal of applied psychology, 85(6), 971-86.
78.Marques-Quinteiro, P., Curral, L., Passos, A. M., & Lewis, K. (2013). And now what do we do? The role of transactive memory systems and task coordination in action teams. Group Dynamics: Theory, Research, and Practice, 17(3), 194–206.
79.Marques-Quinteiro, P., van Dijk, H., Peterson, D. R., Adamovic, M., Buengeler, C., & Santos, C. M. (2022). A model of leadership transitions in teams. Group & Organization Management, 47(2), 342-372.
80.Mathieu, J. E., Heffner, T. S., Goodwin, G. E, Cannon-Bowers, J. A., & Salas, E. (2005). Scaling the quality teammates′ mental models: Equifinality and normative comparisons. Journal of Organizational Behavior, 2 37-56.
81.Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E., & Cannon-Bowers, J. A. (2000). The influence of shared mental models on team process and performance. Journal of Applied Psychology, 85(2), 273–283.
82.Maynard, M. T., & Gilson, L. L. (2014). The role of shared mental model development in understanding virtual team effectiveness. Group & Organization Management, 39(1), 3-32.
83.Maynard, M. T., Kennedy, D. M., & Sommer, S. A. (2015). Team adaptation: A fifteen-year synthesis (1998–2013) and framework for how this literature needs to “adapt” going forward. European Journal of Work and Organizational Psychology, 24(5), 652-677.
84.Mohammed, S., Ferzandi, L., & Hamilton, K. (2010). Metaphor no more: A 15-year review of the team mental model construct. Journal of management, 36(4), 876-910.
85.Morrison-Smith, S., & Ruiz, J. (2020). Challenges and barriers in virtual teams: a literature review. SN Applied Sciences, 2, 1-33.
86.Memon, M. A., Cheah, J. H., Ramayah, T., Ting, H., Chuah, F., & Cham, T. H. (2019). Moderation analysis: issues and guidelines. Journal of Applied Structural Equation Modeling, 3(1), 1-11.
87.Nanda, V. (2001, October). On tailoring an organizational standard software development process for specific projects. In Proceedings of the 11th International Conference on Software Quality (pp. 1-13). Madird, Spain: IEEE Computer Society.
88.Oesterle, S., Buchwald, A., & Urbach, N. (2020). Investigating the co-creation of IT consulting service value: empirical findings of a matched pair analysis. Electronic Markets, 1-27.
89.Park, S. H., & Bae, D. H. (2013). Tailoring a large-sized software process using process slicing and case-based reasoning technique. IET Software, 7(1), 47–55.
90.Park, S., & Bae, D. H. (2011). An approach to analyzing the software process change impact using process slicing and simulation. Journal of Systems and Software, 84(4), 528-543.
91.Parker, S. K., Williams, H. M., & Turner, N. (2006). Modeling the antecedents of proactive behavior at work. Journal of Applied Psychology, 91(3), 636-652.
92.Pearsall, M., Ellis, A., & Stein, J. (2009). Coping with challenge and hindrance stressors in teams: Behavioral, cognitive, and affective outcomes. Organizational Behavior and Human Decision Processes, 109, 18–28.
93.Pedreira, O., Piattini, M., Luaces, M. R., & Brisaboa, N. R. (2007). A systematic review of software process tailoring. ACM SIGSOFT Software Engineering Notes, 32(3), 1-6.
94.Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879-903.
95.Preston, D. S., & Karahanna, E. (2009). Antecedents of IS strategic alignment: A Nomological network. Information Systems Research, 20(2), 159–179.
96.Pillat, R. M., Oliveira, T. C., Alencar, P. S., & Cowan, D. D. (2015). BPMNt: A BPMN extension for specifying software process tailoring. Information and Software Technology, 57, 95-115.
97.Purwanto, A., & Sudargini, Y. (2021). Partial least squares structural squation modeling (PLS-SEM) analysis for social and management research: a literature review. Journal of Industrial Engineering & Management Research, 2(4), 114-123.
98.Ramos-Villagrasa, P. J., Navarro, J., & García-Izquierdo, A. L. (2012). Chaotic dynamics and team effectiveness: Evidence from professional basketball. European Journal of Work and Organizational Psychology, 21(5), 778–802.
99.Ramos-Villagrasa, P. J., Passos, A. M., & García-Izquierdo, A. L. (2019). From planning to performance: The adaptation process as a determinant of outcomes. the Journal of Applied behavioral science, 55(1), 96-114.
100.Randall, K. R., Resick, C. J., & DeChurch, L. A. (2011). Building team adaptive capacity: The roles of sensegiving and team composition. Journal of Applied Psychology, 96(3), 525-540.
101. Resick, C. J., Murase, T., Bedwell, W. L., Sanz, E., Jimenez, M., & DeChurch, L. A. (2010). Mental model metrics and team adaptability: A multi-facet multi-method examination. Group Dynamics: Theory, Research, and Practice, 14, 332–349.
102.Rosen, M. A., Bedwell, W. L., Wildman, J. L., Fritzsche, B. A., Salas, E., & Burke, C. S. (2011). Managing adaptive performance in teams: Guiding principles and behavioral markers for measurement. Human resource management review, 21(2), 107-122.
103.Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological bulletin, 100(3), 349-363.
104.Rouse, W. B., Cannon-Bowers, J. A., & Salas, E. (1992). The role of mental models in team performance in complex systems. Systems, Man and Cybernetics, IEEE Transactions on, 22(6), 1296–1308.
105.Ramayah, T. J. F. H., Cheah, J., Chuah, F., Ting, H., & Memon, M. A. (2018). Partial least squares structural equation modeling (PLS-SEM) using smartPLS 3.0. An updated guide and practical guide to statistical analysis.
106.Salas, E., Sims, D. E., & Burke, C. S. (2005). Is there a ‘‘big five’’ in teamwork? Small Group Research, 36(5), 555–599.
107.Stagl, K. C., Shawn Burke, C., Salas, E., & Pierce, L. (2006). Team adaptation: Realizing team synergy. In Understanding adaptability: A prerequisite for effective performance within complex environments (pp. 117-141). Emerald Group Publishing Limited.
108.Sanchez-Manzanares, M., Rico, R., Antino, M., & Uitdewilligen, S. (2020). The joint effects of leadership style and magnitude of the disruption on team adaptation: A longitudinal experiment. Group & Organization Management, 45(6), 836-864.
109.Santos, C. M., Passos, A. M., & Uitdewilligen, S. (2016). When shared cognition leads to closed minds: Temporal mental models, team learning, adaptation and performance. European Management Journal, 34(3), 258-268.
110.Santos, C. M., Uitdewilligen, S., & Passos, A. M. (2015). Why is your team more creative than mine? The influence of shared mental models on intra‐group conflict, team creativity and effectiveness. Creativity and innovation management, 24(4), 645-658.
111.Shimoni, B. (2018). Bringing agency and social structure back into organization development: Toward a practice of habitus consulting. Journal of Applied Behavioral Science, 54(2), 208-225.
112.Sharma, P. N., & Kirkman, B. L. (2015). Leveraging leaders: A literature review and future lines of inquiry for empowering leadership research. Group & Organization Management, 40(2), 193-237.
113.Singh, K. (2021, December). Leadership for Team Adaptation and Performance During COVID-19 Crisis and Beyond: An Examination of Leader-member Exchange and Leader Humility. In 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1294-1298).
114.Slaughter, S. A., Levine, L., Ramesh, B., Pries-Heje, J., & Baskerville, R. (2006). Aligning software processes with strategy. Mis Quarterly, 891-918.
115.Smith-Jentsch, K. A., Mathieu, J. E., & Kraiger, K. (2005). Investigating linear and interactive effects of shared mental models on safety and efficiency in a field setting. Journal of applied psychology, 90(3), 523-535.
116.Schneider, Hanges, P. J., Smith, D. B., & Salvaggio, A. N. (2003). Which Comes First: Employee Attitudes or Organizational Financial and Market Performance? Journal of Applied Psychology, 88(5), 836–851.
117.Shin, Y., Kim, M., Choi, J. N., & Lee, S. H. (2016). Does team culture matter? Roles of team culture and collective regulatory focus in team task and creative performance. Group & Organization Management, 41(2), 232-265.
118.Streukens, S., & Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. European management journal, 34(6), 618-632.
119.Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European journal of marketing, 53(11), 2322-2347.
120.Sarstedt, M., Hair, J. F., Pick, M., Liengaard, B. D., Radomir, L., & Ringle, C. M. (2022). Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychology & Marketing, 39(5), 1035-1064.
121.Shmueli, G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The Elephant in the Room: Predictive Performance of PLS Models. Journal of Business Research, 69(10), 4552-4564.
122.Tallon, P. P. (2007). A process-oriented perspective on the alignment of information technology and business strategy. Journal of Management Information Systems, 24(3), 227–268.
123.Tallon, P. P. (2010). A service science perspective on strategic choice, IT, and performance in U.S. banking. Journal of Management Information Systems, 26(4), 219–252.
124.Tallon, P. P., & Pinsonneault, A. (2011). Competing perspectives on the link between strategic information technology alignment and organizational agility: Insights from a mediation model. MIS Quarterly, 35(2), 463–486.
125.Tinsley, H. E., & Tinsley, D. J. (1987). Uses of factor analysis in counseling psychology. Journal of Counseling Psychology, 34, 414-424.
126.Uitdewilligen, S., Waller, M. J., & Pitariu, A. H. (2013). Mental model updating and team adaptation. Small Group Research, 44(2), 127-158.
127.von Wangenheim, C. G., Weber, S., Hauck, J. C. R., & Trentin, G. (2006). Experiences on establishing software processes in small companies. Information and Software Technology, 48(9), 890-900.
128.Xu, P. (2005). Knowledge support in software process tailoring. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 87c-87c). Berlin: IEEE.
129.Xu, P., & Ramesh, B. (2007). Software process tailoring: an empirical investigation. Journal of Management Information Systems, 24(2), 293-328.
130.Xu, P., & Ramesh, B. (2008). Impact of knowledge support on the performance of software process tailoring. Journal of Management Information Systems, 25(3), 277-314.
131.Xu, P., & Ramesh, B. (2008). Using process tailoring to manage software development challenges. IT Professional, 10(4), 39-45.
132.Yang, H. D., Kang, H. R., & Mason, R. M. (2008). An exploratory study on meta skills in software development teams: antecedent cooperation skills and personality for shared mental models. European Journal of Information Systems, 17, 47-61.
133.Yu, X., & Petter, S. (2014). Understanding agile software development practices using shared mental models theory. Information and software technology, 56(8), 911-921.
134.Yamin, S., & Kurniawan, H. (2011). Generasi baru mengolah data penelitian dengan partial least square path modeling. Jakarta: Salemba Infotek.
135.Zamani, E. D., & Pouloudi, N. (2022). Shared mental models and perceived proximity: a comparative case study. Information Technology & People, 35(2), 723-749.
136.Zhou, Y., & Wang, E. (2010). Shared mental models as moderators of team process-performance relationships. Social Behavior and Personality: an international journal, 38(4), 433-444.
指導教授 陳仲儼(Chung-Yang Chen) 審核日期 2023-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明