博碩士論文 110423078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.14.12.254
姓名 何仲霖(Chung-Lin Ho)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 複數神經模糊機器學習方法在多目標時間序列預測的研究與應用
(A Study on Complex-Valued Neuro-Fuzzy Machine Learning Approach and Its Applications to Multi-Target Forecasting of Time Series)
相關論文
★ 變數選擇在智慧型系統與應用之研究★ 智慧型系統之參數估測研究─一個新的DE方法
★ 合奏學習式智慧型系統在分類問題之研究★ 複數模糊類神經系統於多類別分類問題之研究
★ 融入後設認知策略的複數模糊認知圖於分類問題之研究★ 分類問題之研究-以複數型模糊類神經系統為方法
★ 智慧型差分自回歸移動平均模型於時間序列預測之研究★ 計算智慧及複數模糊集於適應性影像處理之研究
★ 智慧型模糊類神經計算模式使用複數模糊集合與ARIMA模型★ Empirical Study on IEEE 802.11 Wireless Signal – A Case Study at the NCU Campus
★ 自我建構式複數模糊ARIMA於指數波動預測之研究★ 資料前處理之研究:以基因演算法為例
★ 針對文字分類的支援向量導向樣本選取★ 智慧型區間預測之研究─以複數模糊類神經、支持向量迴歸、拔靴統計為方法
★ 複數模糊類神經網路在多目標財經預測★ 智慧型模糊類神經計算使用非對稱模糊類神經網路系統與球型複數模糊集
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本研究提出一種新的時間序列預測方法,採用多目標複數神經模糊結合多群機器學習技術。傳統的時間序列預測中,通常只考慮單一目標,忽略了多個目標之間的關聯性。因此,本研究提出一個僅使用複數數據的模型概念,稱為基於複數的神經模糊推理系統(Complex number based neuro-fuzzy inference system; CNNFIS)。該模型採用模糊If-Then規則的神經網絡框架,將球型複數模糊集(Sphere Complex Fuzzy Sets; SCFSs)作為模型前鑑部,後鑑部使用線性函數。在模型中,數據和參數都表示為複數數據,以避免維度過高的問題。這種方法可以降低模型的複雜性,進而減少過度擬合的可能性。本研究也提出新的多群粒子群最佳化(Multi-swarm particle swarm optimization; MSPSO)機器學習方法,將整個參數空間劃分為多個子空間,每個群體可以專注於搜索特定的子空間,而不是搜索整個空間。將多群粒子群最佳化演算法結合遞迴最小平方估計法(Recursive least squares estimator; RLSE),採用混合式參數學習的分而治之方法來更有效地訓練模型。另外,使用基於熵的特徵選取方法進行數據的前處理,透過影響資訊和選取增益的概念為模型選擇重要和高資訊量的特徵作為模型的輸入。此外,基於減法分群法(Subtractive clustering; SC)的基礎上,提出複數數據的減法分群法(Subtractive clustering for complex-valued data; SCC),將輸入空間劃分為多個部分,將符合條件的輸入空間用於CNNFIS建模,並應用投影矩陣於SCFS的計算,形成模型中使用的複數隸屬度,以靈活調整模型輸出數量。本研究使用數個金融時間序列數據集進行三個實驗,包括單目標、雙目標和四目標預測,來評估該方法的效能,並將其效能與其他方法進行了比較。
摘要(英) This study proposes a new time series forecasting method using multi-target complex neuro-fuzzy combined with multi-swarm machine learning techniques. In traditional time series forecasting, usually, only a single target is considered, and the correlation between multiple targets is ignored. Therefore, this study introduces a model concept that exclusively utilizes complex data, termed the complex number-based neuro-fuzzy inference system (CNNFIS). The model adopts a neural network framework with fuzzy If-Then rules, utilizing sphere complex fuzzy sets (SCFSs) as the premise part and linear functions as the consequent part. In this model, both data and parameters are represented as complex data to avoid the issue of high dimensionality. This approach reduces model complexity, thus decreasing the possibility of overfitting. Additionally, this study proposes a novel multi-swarm particle swarm optimization (MSPSO) machine learning method, which divides the entire parameter space into multiple subspaces, allowing each swarm to focus on searching specific subspaces rather than the entire space. By combining the MSPSO algorithm with the recursive least squares estimator (RLSE) and employing a divide-and-conquer approach with hybrid parameter learning, the model training process becomes more efficient. Moreover, a feature selection method based on entropy is employed for data preprocessing, selecting important and highly informative features for model input based on the concepts of influence information and selection gain. Furthermore, building upon the subtractive clustering (SC) method, a subtractive clustering for complex-valued data (SCC) approach is proposed, which partitions the input space into multiple regions and utilizes the selected input space that meets certain conditions for CNNFIS modeling. The projection matrix is applied to calculate SCFSs, forming complex membership degrees used in the model, allowing for flexible adjustment of the model′s output quantity. Several financial time series datasets are employed in three experiments, including single, dual, and four-target predictions, to evaluate the performance of the proposed method, which is compared to other existing approaches.
關鍵字(中) ★ 複數神經模糊
★ 複數數據的減法分群
★ 球型複數模糊集
★ 多群機器學習
★ 多目標預測
關鍵字(英) ★ Complex-valued neuro-fuzzy
★ subtractive clustering for complex data
★ sphere complex fuzzy sets
★ multi-swarm machine learning
★ multi-target prediction
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
專有名詞及縮寫字說明表 IX
記號使用說明表 XI
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 1
1.3研究方法概述 2
1.4論文架構 4
第二章 文獻探討 5
2.1 特徵選取 5
2.2 複數模糊集 6
2.3 最佳化演算法 6
2.3.1 多群粒子群最佳化演算法 7
第三章 系統設計與架構 9
3.1 特徵選取 9
3.1.1 影響資訊矩陣 9
3.1.2 跨目標特徵選取演算法 12
3.2 前鑑部的挑選 14
3.2.1複數數據的減法分群法 14
3.2.2輸入空間網格的選擇 17
3.3 投影式球型複數模糊集 18
3.3.1 球型複數模糊集 18
3.3.2投影式球型複數模糊集 20
3.4 CNNFIS模型 22
3.5 混合式學習演算法 27
3.5.1 粒子群最佳化演算法 27
3.5.2 多群粒子群最佳化演算法 28
3.5.3 遞迴最小平方估計法 29
3.5.4 MSPSO-RLSE 31
第四章 實驗與結果 34
4.1 實驗一:台灣加權指數預測 34
4.2 實驗二:歐元兌美元與歐元兌澳元之匯率預測 49
4.3 實驗三:紐約證券交易所綜合指數、恒生指數、富時100指數及德國DAX指數預測 60
第五章 討論 76
5.1 研究方法的討論 76
5.2 實驗一:使用CNNFIS對單目標時間序列資料進行預測 77
5.3 實驗二:使用複數型態輸出對雙目標進行預測 78
5.4 實驗三:使用多個複數型態輸出進行四目標預測 79
5.5 實驗誤差所帶來的資訊 80
第六章 結論與未來研究方向 81
6.1結論 81
6.2 未來研究方向 83
參考文獻 84
參考文獻 [1] Akay, Bahriye and Dervis Karaboga. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23, 1001-1014.
[2] Aladag, Cagdas Hakan, Ufuk Yolcu, Erol Egrioglu and Eren Bas (2014). Fuzzy lagged variable selection in fuzzy time series with genetic algorithms. Applied Soft Computing, 22, 465-473.
[3] Alvisi, Stefano and Marco Franchini. (2011). Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environmental Modelling & Software, 26(4), 523-537.
[4] Bishop, Christopher M. (1995). Neural Networks for Pattern Recognition. Oxford University Press, Cambridge, UK.
[5] Bisht, Kamlesh and Sanjay Kumar. (2019). Hesitant fuzzy set based computational method for financial time series forecasting. Granular Computing, 4, 655-669.
[6] Bisht, Dinesh CS and Pankaj Kumar Srivastava. (2019). Fuzzy optimization and decision making. Advanced Fuzzy Logic Approaches in Engineering Science, 310-326.
[7] Blum, Avrim and Pat Langley. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2), 245-271.
[8] Cao, Jian, Zhi Li and Jian Li. (2019). Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and its Applications, 519, 127-139.
[9] Chandrashekar, Girish and Ferat Sahin. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
[10] Chen, Shyi-Ming. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81(3), 311-319.
[11] Chen, Shyi-Ming and Kurniawan Tanuwijaya. (2011). Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques. Expert Systems with Applications, 38(12), 15425-15437.
[12] Cheng, Ching-Hsue, Guang-Wei Cheng and Jia-Wen Wang. (2008). Multi-attribute fuzzy time series method based on fuzzy clustering. Expert Systems with Applications, 34(2), 1235-1242.
[13] Chiu, Stephen L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 2(3), 267-278.
[14] de Campos Souza, Paulo Vitor. (2020). Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature. Applied Soft Computing, 92, article 106275, 1-57.
[15] Dick, Scott. (2005). Toward complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 13(3), 405-414.
[16] Dong, Qingli and Xuejiao Ma. (2021). Enhanced fuzzy time series forecasting model based on hesitant differential fuzzy sets and error learning. Expert Systems with Applications, 166, article 114056, 1-25.
[17] Dorigo, Marco, Mauro Birattari and Thomas Stutzle. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39.
[18] Famili, A., Wei-Min Shen, Richard Weber and Evangelos Simoudis. (1997). Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1(1), 3-23
[19] Hagan, Martin T., Howard B. Demuth and Mark Beale. (1997). Neural Network Design. PWS Publishing Company, Boston, USA.
[20] Huarng, Kunhuang. (2001). Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems, 123(3), 387-394.
[21] Huarng, Kunhuang. (2001). Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems, 123(3), 369-386.
[22] Huarng, Kunhuang and Tiffany Hui-Kuang Yu. (2006). Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(2), 328-340.
[23] Jallal, Mohammed Ali, Aurora Gonzalez-Vidal, Antonio F. Skarmeta, Samira Chabaa and Abdelouhab Zeroual. (2020). A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction. Applied Energy, 268, article 114977, 1-19.
[24] Jiang, Ping, Hufang Yang and Jiani Heng. (2019). A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting. Applied Energy, 235, 786-801.
[25] Kahraman, Cengiz, Ahmet Beşkese and F. Tunc Bozbura. (2006). Fuzzy regression approaches and applications. Fuzzy Applications in Industrial Engineering, 589-615.
[26] Kandel, Abraham and Langholz Gideon. (1993). Fuzzy Control Systems. Crc press, Boca Raton, Florida.
[27] Kazeminezhad, M. H., A. Etemad-Shahidi and S. J Mousavi. (2005). Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering, 32(14-15), 1709-1725.
[28] Kennedy, James and Russell Eberhart. (1995, November). Particle swarm optimization. Proceedings of ICNN′95-International Conference on Neural Networks, 4, 1942-1948, Perth, WA, Australia.
[29] Kira, Kenji and Larry A. Rendell. (1992). A practical approach to feature selection. Machine Learning Proceedings 1992, 249-256, San Francisco, CA, USA.
[30] Kohavi, Ron and George H John. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324.
[31] Körkel, Stefan, Huiqin Qu, Gerd Rücker and Sebastian Sager. (2004, August). Derivative based vs. derivative free optimization methods for nonlinear optimum experimental design. Current Trends in High Performance Computing and Its Applications, 339-344, Shanghai, PR China.
[32] Lal, Thomas Navin, Olivier Chapelle, Jason Weston and André Elisseeff. (2006). Embedded methods. Feature Extraction: Foundations and Applications, 137-165.
[33] Lane, Terran, and Brodley, Carla E. (1997, October). An application of machine learning to anomaly detection. Proceedings of the 20th National Information Systems Security Conference, 377, 366-380, Baltimore, USA.
[34] Li. Chunshien. (2022). Training material for graduate students. Department of Information Management, National Central University, Taiwan. (Unpublished)
[35] Li, Chunshien and Tai-Wei Chiang. (2011). Complex fuzzy computing to time series prediction—A multi-swarm PSO learning approach. Intelligent Information and Database Systems, 242-251, Heidelberg, Germany.
[36] Li, Chunshien and Tai-Wei Chiang. (2011). Complex fuzzy model with PSO-RLSE hybrid learning approach to function approximation. International Journal of Intelligent Information and Database Systems, 5(4), 409-430.
[37] Li, Chunshien and Tai-Wei Chiang. (2011). Function Approximation with Complex Neuro-Fuzzy System Using Complex Fuzzy Sets-A New Approach. New Generation Computing, 29(3), 261-276.
[38] Li, Chunshien and Tsunghan Wu. (2011). Adaptive fuzzy approach to function approximation with PSO and RLSE. Expert Systems with Applications, 38(10), 13266-13273.
[39] Li, Junliang and Xinping Xiao. (2008, June). Multi-swarm and multi-best particle swarm optimization algorithm. 2008 7th World Congress on Intelligent Control and Automation, 6281-6286, Chongqing, China.
[40] Liang, Jane-Jing and Ponnuthurai Nagaratnam Suganthan. (2005, June). Dynamic multi-swarm particle swarm optimizer. Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005, 124-129, Pasadena, CA, USA.
[41] Liu, Gang, Fuyuan Xiao, Chin-Teng Lin and Zehong Cao. (2020). A fuzzy interval time-series energy and financial forecasting model using network-based multiple time-frequency spaces and the induced-ordered weighted averaging aggregation operation. IEEE Transactions on Fuzzy Systems, 28(11), 2677-2690.
[42] Mamdani, Ebrahim H. and Sedrak Assilian. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13.
[43] Marquardt, Donald W. and Ronald D. Snee. (1975). Ridge regression in practice. The American Statistician, 29(1), 3-20.
[44] Mathew, Manoj, Ripon K. Chakrabortty and Michael J. Ryan. (2020). A novel approach integrating AHP and TOPSIS under spherical fuzzy sets for advanced manufacturing system selection. Engineering Applications of Artificial Intelligence, 96, article 103988, 1-13.
[45] Mirjalili, Seyedali and Andrew Lewis. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67.
[46] Pattanayak, Radha Mohan, Sibarama Panigrahi and H. S Behera. (2020). High-order fuzzy time series forecasting by using membership values along with data and support vector machine. Arabian Journal for Science and Engineering, 45(12), 10311-10325.
[47] Prado, Francisco, Marcel C. Minutolo and Werner Kristjanpoller. (2020). Forecasting based on an ensemble autoregressive moving average-adaptive neuro-fuzzy inference system–neural network-genetic algorithm framework. Energy, 197, article 117159, 1-46.
[48] Pudil, Pavel, F. J. Ferri, J. Novovicova and J. Kittler. (1994, October). Floating search methods for feature selection with nonmonotonic criterion functions. Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5), 2, 279-283, Jerusalem, Israel.
[49] Rios, Luis Miguel and Nikolaos V. Sahinidis. (2013). Derivative-free optimization: a review of algorithms and comparison of software implementations. Journal of Global Optimization, 56, 1247-1293.
[50] Shannon, Claude Elwood. (2001). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423.
[51] Shevade, Shirish K., Sathiya S. Keerthi, Chiranjib Bhattacharyya and K. R. K Murthy. (2000). Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11(5), 1188-1193.
[52] Sinclair, Chris, Lyn Pierce and Sara Matzner. (1999, December). An application of machine learning to network intrusion detection. Proceedings 15th Annual Computer Security Applications Conference (ACSAC′99), 371-377, Phoenix, AZ, USA.
[53] Song, Qiang and Brad S. Chissom. (1994). Forecasting enrollments with fuzzy time series—Part II. Fuzzy Sets and Systems, 62(1), 1-8.
[54] Takagi, Tomohiro and Michio Sugeno. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, (1), 116-132.
[55] Tibshirani, Robert. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
[56] Tseng, Chung-Shi, Bor-Sen Chen and Huey-Jian Uang. (2001). Fuzzy tracking control design for nonlinear dynamic systems via TS fuzzy model. IEEE Transactions on Fuzzy Systems, 9(3), 381-392.
[57] Tu. Chia-Hao. (2021). Intelligent Neuro-Fuzzy Computing with an Asymmetric Neuro-Fuzzy System and Sphere Complex Fuzzy Sets. Ph.D. Dissertation, Department of Information Management, National Central University, Taiwan.
[58] Tu, Chia-Hao and Chunshien Li. (2019). Multitarget prediction—A new approach using sphere complex fuzzy sets. Engineering Applications of Artificial Intelligence, 79, 45-57.
[59] Van den Bergh, Frans and Andries P. Engelbrecht. (2004). A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 225-239.
[60] Wan, Yuqing and Yain-Whar Si. (2017). Adaptive neuro fuzzy inference system for chart pattern matching in financial time series. Applied Soft Computing, 57, 1-18.
[61] Wang, Jie and Jun Wang. (2017). Forecasting stochastic neural network based on financial empirical mode decomposition. Neural Networks, 90, 8-20.
[62] Witten, Ian H., Eibe Frank, Mark A. Hall, C. J. Pal and M. DATA. (2005, June). Practical machine learning tools and techniques. Data Mining, 2(4).
[63] Wu, Hao, Haiming Long and Jiancheng Jiang. (2019). Handling forecasting problems based on fuzzy time series model and model error learning. Applied Soft Computing, 78, 109-118.
[64] Xu, Xia, Yinggan Tang, Junpeng Li, Changchun Hua and Xinping Guan. (2015). Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy. Applied Soft Computing, 29, 169-183.
[65] Ye, Wenxing, Weiying Feng, and Suohai Fan. (2017). A novel multi-swarm particle swarm optimization with dynamic learning strategy. Applied Soft Computing, 61, 832-843.
[66] Yolcu, Ufuk, Cagdas Hakan Aladag, Erol Egrioglu and Vedide R Uslu. (2013). Time-series forecasting with a novel fuzzy time-series approach: an example for Istanbul stock market. Journal of Statistical Computation and Simulation, 83(4), 599-612.
[67] Yolcu, Ozge Cagcag and Faruk Alpaslan. (2018). Prediction of TAIEX based on hybrid fuzzy time series model with single optimization process. Applied Soft Computing, 66, 18-33.
[68] Yolcu, Ozge Cagcag, Ufuk Yolcu, Erol Egrioglu and C. Hakan Aladag. (2016). High order fuzzy time series forecasting method based on an intersection operation. Applied Mathematical Modelling, 40(19-20), 8750-8765.
[69] Zadeh, Lotfi Asker. (1965). Fuzzy sets. Inform Control, 8, 338-353.
[70] Zadeh, Lotfi Asker. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199-249
[71] Zhao, Zhengji, Juan C. Meza and Michel Van Hove. (2006). Using pattern search methods for surface structure determination of nanomaterials. Journal of Physics: Condensed Matter, 18(39), 8693.
[72] Zhou, Tianle, Chaoyi Chu, Shuangbao Song, Yirui Wang and Shangce Gao. (2015, December). A dendritic neuron model for exchange rate prediction. 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), 10-14, Nanjing, China.
指導教授 李俊賢(Chun-shien Li) 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明