參考文獻 |
參考文獻
Al Amrani, Y., Lazaar, M., & El Kadiri, K. E. (2018). Random forest and support vector machine based hybrid approach to sentiment analysis. Procedia Computer Science, 127, 511-520.
Alanyali, M., Moat, H. S., & Preis, T. (2013). Quantifying the relationship between financial news and the stock market. Scientific reports, 3(1), 1-6.
Albahli, S., Awan, A., Nazir, T., Irtaza, A., Alkhalifah, A., & Albattah, W. (2022). A deep learning method DCWR with HANet for stock market prediction using news articles. Complex & Intelligent Systems, 8(3), 2471-2487. https://doi.org/10.1007/s40747-022-00658-0
Altszyler, E., Sigman, M., Ribeiro, S., & Slezak, D. F. (2016). Comparative study of LSA vs Word2vec embeddings in small corpora: a case study in dreams database. arXiv preprint arXiv:1610.01520.
Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211.
Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 408, 189-215.
Chandola, D., Mehta, A., Singh, S., Tikkiwal, V. A., & Agrawal, H. (2022). Forecasting Directional Movement of Stock Prices using Deep Learning. Annals of Data Science, 1-18.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Ferguson, N. J., Philip, D., Lam, H., & Guo, J. M. (2015). Media content and stock returns: The predictive power of press. Multinational Finance Journal, 19(1), 1-31.
Guo, J., & Tuckfield, B. (2020). News-based machine learning and deep learning methods for stock prediction. Journal of Physics: Conference Series,
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Huang, A. H., Wang, H., & Yang, Y. (2023). FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2), 806-841.
Huang, H., Liu, X., Zhang, Y., & Feng, C. (2022). News-driven stock prediction via noisy equity state representation. Neurocomputing, 470, 66-75.
Kilimci, Z. H., & Duvar, R. (2020). An efficient word embedding and deep learning based model to forecast the direction of stock exchange market using twitter and financial news sites: a case of istanbul stock exchange (bist 100). IEEE Access, 8, 188186-188198.
Kim, Y., Jeong, S. R., & Ghani, I. (2014). Text opinion mining to analyze news for stock market prediction. Int. J. Advance. Soft Comput. Appl, 6(1), 2074-8523.
Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE transactions on neural networks, 8(1), 98-113.
Lin, W.-C., Tsai, C.-F., & Chen, H. (2022). Factors affecting text mining based stock prediction: Text feature representations, machine learning models, and news platforms. Applied Soft Computing, 130, 109673.
Long, W., Song, L., & Tian, Y. (2019). A new graphic kernel method of stock price trend prediction based on financial news semantic and structural similarity. Expert Systems with Applications, 118, 411-424.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.
Mishra, P., Pai, P., Singh, P., Kulkarni, S., & Weakey, S. A. (2021). Analysis of Effect of Historical Prices And News on The Stock Market. 2021 International Conference on Communication information and Computing Technology (ICCICT),
Mondal, P., Shit, L., & Goswami, S. (2014). Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices. International Journal of Computer Science, Engineering and Applications, 4(2), 13.
Nam, K., & Seong, N. (2019). Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market. Decision Support Systems, 117, 100-112.
Navarro, J. M., Martínez-España, R., Bueno-Crespo, A., Martínez Carreras, R., & Cecilia, J. (2020). Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network. Sensors, 20, 903. https://doi.org/10.3390/s20030903
Ray, S., Alshouiliy, K., & Agrawal, D. (2020). Dimensionality Reduction for Human Activity Recognition Using Google Colab. Information, 12, 6. https://doi.org/10.3390/info12010006
Rong, X. (2014). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.
Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11), 2673-2681.
Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V. K., & Soman, K. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. 2017 international conference on advances in computing, communications and informatics (icacci),
Seong, N., & Nam, K. (2021). Predicting stock movements based on financial news with segmentation. Expert Systems with Applications, 164, 113988.
Shen, J., & Shafiq, M. O. (2020). Short-term stock market price trend prediction using a comprehensive deep learning system. Journal of big Data, 7(1), 1-33.
Souma, W., Vodenska, I., & Aoyama, H. (2019). Enhanced news sentiment analysis using deep learning methods. Journal of Computational Social Science, 2(1), 33-46.
Stoll, H. R., & Whaley, R. E. (1990). Stock market structure and volatility. The Review of Financial Studies, 3(1), 37-71.
Vijayarani, S., Ilamathi, M. J., & Nithya, M. (2015). Preprocessing techniques for text mining-an overview. International Journal of Computer Science & Communication Networks, 5(1), 7-16.
Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Natural language based financial forecasting: a survey. Artificial Intelligence Review, 50(1), 49-73.
Xu, D., Xu, Z., Chen, S., & Fujita, H. (2022). A multi-channel cross-residual deep learning framework for news-oriented stock movement prediction. Economic Research-Ekonomska Istraživanja, 1-18.
Zhang, Y., Jin, R., & Zhou, Z.-H. (2010). Understanding bag-of-words model: a statistical framework. International journal of machine learning and cybernetics, 1, 43-52. |