博碩士論文 110426033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.14.72.80
姓名 賴沂彤(Yi-Tung Lai)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 根據定性與定量資料預測企業信用評級
(Predicting Corporate Credit Ratings Based on Qualitative and Quantitative Data)
相關論文
★ 應用失效模式效應分析於產品研發時程之改善★ 服務品質因子與客戶滿意度關係研究-以汽車保修廠服務為例
★ 家庭購車決策與行銷策略之研究★ 計程車車隊派遣作業之研究
★ 電業服務品質與服務失誤之探討-以台電桃園區營業處為例★ 應用資料探勘探討筆記型電腦異常零件-以A公司為例
★ 車用配件開發及車主購買意願探討(以C公司汽車配件業務為實例)★ 應用田口式實驗法於先進高強度鋼板阻抗熔接條件最佳化研究
★ 以層級分析法探討評選第三方物流服務要素之研究-以日系在台廠商為例★ 變動良率下的最佳化批量研究
★ 供應商庫存管理架構下運用層級分析法探討供應商評選之研究-以某電子代工廠為例★ 台灣地區快速流通消費產品銷售預測模型分析研究–以聯華食品可樂果為例
★ 競爭優勢與顧客滿意度分析以中華汽車為例★ 綠色採購導入對電子代工廠的影響-以A公司為例
★ 以德菲法及層級分析法探討軌道運輸業之供應商評選研究–以T公司為例★ 應用模擬系統改善存貨管理制度與服務水準之研究-以電線電纜製造業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 企業信用評級是資本市場裡投資者對一家公司的重要判斷依據,公開評級結果能夠使企業的違約風險與信用狀況更加公開透明,以降低投資者與經營者之間的資訊不對稱,讓資本市場的交易更公平。

由於傳統的企業信用評級評定過程非常耗費時間與金錢成本,為了即時且快速地因應市場變化作出更新,採用機器學習方法來預測企業信用評級成了近年常被討論的研究課題。

本研究將文本資料(公司管理階層觀點)透過自然語言模型(NLP)處理後匯出文本向量表示,並加入檢索增強生成(RAG)的輸出結果,最後再結合傳統財務數據並匯入極限梯度提升法(XGBoost)進行企業信用評級的預測,來獲得一個兼顧準確率與可解釋力的多元分類模型。
摘要(英) Corporate credit rating serves as a critical reference for investors in the capital market to evaluate a company. Publicly available rating results enhance transparency regarding a company’s default risk and credit status, reducing information asymmetry between investors
and operators, and promoting fairer transactions in the capital market.

Traditional corporate credit rating processes are time-consuming and costly. To respond to market changes promptly and efficiently, applying machine learning methods to predict corporate credit ratings has become a widely discussed research topic in recent years.

This study leverages textual data (MD&A), processed through natural language models (NLP), to generate text vector representations. It incorporates the output of Retrieval-Augmented Generation (RAG) and integrates it with traditional financial data. These inputs are then fed into the Extreme Gradient Boosting (XGBoost) algorithm to predict corporate credit ratings, aiming to develop a multi-class classification model that balances accuracy and interpretability.
關鍵字(中) ★ 企業信用評級預測
★ MD&A文本分析
★ 深度學習
★ 極限梯度提升法
關鍵字(英) ★ Corporate Credit Rating Prediction
★ MD&A
★ Deep Learning
★ XGBoost
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章、緒論 1
1-1 研究背景與動機 1
1-2 問題定義 2
1-3 研究目的 3
1-4 研究方法 4
1-5 研究架構 4
第二章、文獻探討 5
2-1 預測企業信用評級的相關研究 5
2-2 文本分析 8
2-3 蒸餾BERT (Distil Bidirectional Encoder Representations from Transformers, DistilBERT) 9
2-3-1 詞嵌入 (Word Embedding) 9
2-3-2 轉換器 (Transformer) 10
2-4 檢索增強生成 (Retrieval-Augmented Generation, RAG) 12
2-4-1 檢索器(Retriever)與生成器(Generator) 12
2-4-2 大型語言模型(LLM) 12
2-5 極限梯度提升法 (Extreme Gradient Boosting, XGBoost) 13
第三章、方法論 14
3-1 原始資料介紹與資料前處理 15
3-1-1 數值資料 15
3-1-2 文本資料 15
3-1-3 企業信用評級的分類 16
3-2 模型設計 17
3-2-1 蒸餾BERT (Distil Bidirectional Encoder Representations from Transformers, DistilBERT) 17
3-2-2 檢索增強生成 (Retrieval-Augmented Generation, RAG) 18
3-2-3 極限梯度提升法 (Extreme Gradient Boosting, XGBoost) 19
3-3 模型評估 21
第四章、實驗結果 22
4-1 實驗設計 22
4-1-1 資料集分割 22
4-1-2 輸入變量組合與訓練參數設計 22
4-1-3 最佳化模型配置 23
4-2 實驗分析與評估 27
4-2-1 探討不同配置組合之預測績效 27
4-2-2 探討不同配置組合在不同模型下之預測績效 30
4-2-3 極限梯度提升法之可解釋力 34
第五章、結論與未來研究方向 35
參考文獻 37
附錄一 財務指標 40
附錄二 Query 41
參考文獻 [1] Alberti, C., Lee, K., & Collins, M. (2019). A BERT Baseline for the Natural
Questions. arXiv preprint arXiv:1901.08634.
[2] Bengio, Y., Ducharme, R., & Vincent, P. (2003). A Neural Probabilistic Language
Model. Advances in Neural Information Processing Systems 13 (NIPS 2000),50-56.
[3] Bochkay, K., & Levine, Carolyn B. (2019). Using MD&A to Improve Earnings
Forecasts. Journal of Accounting, 34(3), 458–482.
[4] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining,785-794.
[5] Choi, J., Suh, Y., & Jung, N. (2020). Predicting Corporate Credit Rating Based on Qualitative Information of MD&A Transformed Using Document Vectorization Techniques.
Data Technologies and Applications, 54(2), 151–168.
[6] Cuconasu, F., Trappolini, G., & Siciliano, F. (2024). The Power of Noise: Redefining Retrieval for RAG Systems. Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 719-729.
[7] Demoulin, N. T. M., & Coussement, D. (2020). Acceptance of Text-Mining Systems: The Signaling Role of Information Quality. Information & Management, 57(1), 78-82.
[8] Durnev, A., & Mangen, C. (2020). The Spillover Effects of MD&A Disclosures for Real Investment: The Role of Industry Competition. Journal of Accounting and Economics, 70(1),
24-32.
[9] Feldman, R., Govindaraj, S., Livnat, J. and Segal, B. (2010). Management’s tone change, post earnings announcement drift and accruals. Review of Accounting Studies, 15(4), 915-953.
[10] Gao, Y., Xiong, Y., & Gao, X. (2024). Retrieval-Augmented Generation for Large
Language Models: A Survey. arXiv preprint arXiv:2312.10997.
[11] Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A Comparative Study of Forecasting Corporate Credit Ratings Using Neural Networks, Support Vector Machines, and Decision
Trees. The North American Journal of Economics and Finance, 54, 77-82.
[12] Golbayani, P., Wang, D., & Florescu, I. (2020). Application of Deep Neural Networks to
Assess Corporate Credit Rating. arXiv preprint arXiv:2003.02334.
[13] Hajek, P. and Michalak, K. (2013).Feature selection in corporate credit rating prediction.
KnowledgeBased Systems, 51(4), 72-84.
[14] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network.
arXiv preprint arXiv:1503.02531.
[15] Huang, Z., Chen, H., Hsu, C.J., Chen, W.H. and Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support
Systems, 37(4), 543-558.
[16] Kim, K., & Ahn, H. (2012). A Corporate Credit Rating Model Using Multi-Class Support Vector Machines with an Ordinal Pairwise Partitioning Approach. Computers & Operations
Research, 39(8), 1800-1811.
[17] Lee, Y. (2007). Application of Support Vector Machines to Corporate Credit Rating
Prediction. Expert Systems with Applications, 33(2), 67-74.
[18] Lewis, P., & Perez, E. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems 33 (NeurIPS 2020),105-124.
[19] Li, J., Yuan, Y., & Zhang, Z. (2024). Enhancing LLM Factual Accuracy with RAG to Counter Hallucinations: A Case Study on Domain-Specific Queries in Private Knowledge-
Bases. arXiv preprint arXiv:2403.10446.
[20] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space. arXiv preprint arXiv:1301.3781.
[21] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020). DistilBERT, a Distilled Version of
BERT: Smaller, Faster, Cheaper and Lighter. arXiv preprint arXiv:1910.01108.
[22] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, ?., & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing
Systems 30 (NIPS 2017),136-142.
[23] Wang, M., & Ku, H. (2021). Utilizing Historical Data for Corporate Credit Rating
Assessment. Expert Systems With Applications, 165(1),49-57.
[24] Ye, Y., Liu, S., & Li, J. (2008). A Multiclass Machine Learning Approach to Credit Rating
Prediction. IEEE Xplore, 57-61.
[25] Zhang, S., Xu, J., Zhang, Q.J., & Root, D. E. (2016). Parallel matrix neural network training on cluster systems for dynamic FET modeling from large datasets. IEEE Xplore,1-3.
指導教授 葉英傑 審核日期 2025-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明