參考文獻 |
[1]Z. K. A. Mohammed and E. S. A. Ahmed, “Internet of Things Applications, Challenges and Related Future Technologies,” 2017.
[2]R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges,” in 2012 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan: IEEE, Dec. 2012, pp. 257–260.
[3]N. M. Karie, N. M. Sahri, and P. Haskell-Dowland, “IoT Threat Detection Advances, Challenges and Future Directions,” in 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT), Sydney, Australia: IEEE, Apr. 2020, pp. 22–29.
[4]TRANSFORMAINSIGHTS, “Global IoT connections to hit 29.4 billion in 2030.” Available: https://transformainsights.com/global-iot-connections-294
[5]Check Point, “Check Point Research Reports a 38% Increase in 2022 Global Cyberattacks.” Available:https://blog.checkpoint.com/2023/01/05/38-increase-in-2022-global-cyberattacks/
[6]DARKTRACE, “Generative AI Business Email Compromises and Novel Social Engineering Attacks.” Available: https://darktrace.com/news/darktrace-email-defends-organizations-against-evolving-cyber-threat-landscape
[7]B. Subba, S. Biswas, and S. Karmakar, “Intrusion Detection Systems using Linear Discriminant Analysis and Logistic Regression,” in 2015 Annual IEEE India Conference (INDICON), New Delhi, India: IEEE, Dec. 2015, pp. 1–6.
[8]V. M. Deolindo et al., “Using Quadratic Discriminant Analysis by Intrusion Detection Systems for Port Scan and Slowloris Attack Classification,” in Computational Science and Its Applications – ICCSA 2021, O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, and C. M. Torre, Eds., Cham: Springer International Publishing, 2021, pp. 188–200.
[9]B. Naveen, J. K. Grandhi, K. Lasya, E. M. Reddy, N. Srinivasu, and S. Bulla, “Intrusion Detection System (IDS) using Machine Learning Algorithms against Network Attacks,” vol. 71, no. 4, 2022.
[10]Y. Hua, “An Efficient Traffic Classification Scheme Using Embedded Feature Selection and LightGBM,” in 2020 Information Communication Technologies Conference (ICTC), Nanjing, China: IEEE, May 2020, pp. 125–130.
[11]J. Thaker, N. K. Jadav, S. Tanwar, P. Bhattacharya, and H. Shahinzadeh, “Ensemble Learning-based Intrusion Detection System for Autonomous Vehicle,” in 2022 Sixth International Conference on Smart Cities, Internet of Things and Applications (SCIoT), Mashhad, Iran, Islamic Republic of: IEEE, Sep. 2022, pp. 1–6.
[12]L. Ashiku and C. Dagli, “Network Intrusion Detection System using Deep Learning,” Procedia Computer Science, vol. 185, pp. 239–247, 2021.
[13]H. Kaur, H. S. Pannu, and A. K. Malhi, “A Systematic Review on Imbalanced Data Challenges in Machine Learning: Applications and Solutions,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–36, Jul. 2020.
[14]S. Balakrishnan, V. K, and K. A, “Intrusion Detection System Using Feature Selection and Classification Technique,” International Journal of Computer Science and Application, vol. 3, no. 4, p. 145, 2014.
[15]H. Zhang, B. Zhang, L. Huang, Z. Zhang, and H. Huang, “An Efficient Two-Stage Network Intrusion Detection System in the Internet of Things,” Information, vol. 14, no. 2, p. 77, Jan. 2023.
[16]F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “TSDL: A Two-Stage Deep Learning Model for Efficient Network Intrusion Detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.
[17]A. Jahan and M. A. Alam, “Intrusion Detection Systems based on Artificial Intelligence,” International Journal of Advanced Research in Computer Science, 2017.
[18]A. Pal Singh and M. Deep Singh, “Analysis of Host-Based and Network-Based Intrusion Detection System,” IJCNIS, vol. 6, no. 8, pp. 41–47, Jul. 2014.
[19]O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, “An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks,” Expert Systems with Applications, vol. 29, no. 4, pp. 713–722, Nov. 2005.
[20]dummies, “Examining Different Types of Intrusion Detection Systems.” Available: https://www.dummies.com/article/home-auto-hobbies/home-improvement-appliances/safety-security/examining-different-types-of-intrusion-detection-systems-200408/
[21]V. Kumar, Ed., Managing cyber threats: issues, approaches, and challenges. in Massive computing, no. 5. New York, NY: Springer, 2005.
[22]N. Moustafa and J. Slay, “The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set,” Information Security Journal: A Global Perspective, vol. 25, no. 1–3, pp. 18–31, Apr. 2016.
[23]Canadian Institute for Cybersecurity, “CIC-IDS 2017 Datasets.” Available: https://www.unb.ca/cic/datasets/ids-2017.html
[24]Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Idris, A. M. Bamhdi, and R. Budiarto, “CICIDS-2017 Dataset Feature Analysis With Information Gain for Anomaly Detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020.
[25]E. Osa and O. E. Oghenevbaire, “Comparative Analysis of Machine Learning Models in Computer Network Intrusion Detection,” Lagos, Nigeria: IEEE, Apr. 2022, pp. 1–5.
[26]M. A. Almaiah et al., “Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels,” Electronics, vol. 11, no. 21, p. 3571, Nov. 2022.
[27]A. A. Abdulrahman and M. K. Ibrahem, “Toward Constructing a Balanced Intrusion Detection Dataset Based on CICIDS2017”.
[28]Q. Tian, D. Han, K.-C. Li, X. Liu, L. Duan, and A. Castiglione, “An intrusion detection approach based on improved deep belief network,” Applied Intelligence, vol. 50, no. 10, pp. 3162–3178, Oct. 2020.
[29]F. Jiang et al., “Deep Learning Based Multi-Channel Intelligent Attack Detection for Data Security,” IEEE Transactions on Sustainable Computing, vol. 5, no. 2, pp. 204–212, Apr. 2020.
[30]B. Cao, C. Li, Y. Song, Y. Qin, and C. Chen, “Network Intrusion Detection Model Based on CNN and GRU,” Applied Sciences, vol. 12, no. 9, p. 4184, Apr. 2022.
[31]L.-H. Li, R. Ahmad, W.-C. Tsai, and A. K. Sharma, “A Feature Selection Based DNN for Intrusion Detection System,” in 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), IEEE, Jan. 2021, pp. 1–8.
[32]Department of Computer Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey et al., “Multiple Classification of Cyber Attacks Using Machine Learning,” Electrica, vol. 22, no. 2, pp. 313–320, Jun. 2022.
[33]M. Ahmed Siddiqi and W. Pak, “An Optimized and Hybrid Framework for Image Processing Based Network Intrusion Detection System,” Computers, Materials & Continua, vol. 73, no. 2, pp. 3921–3949, 2022.
[34]Y. Sun et al., “Borderline SMOTE Algorithm and Feature Selection-Based Network Anomalies Detection Strategy,” Energies, vol. 15, no. 13, p. 4751, Jun. 2022.
[35]T. A. Alhaj, M. M. Siraj, A. Zainal, H. T. Elshoush, and F. Elhaj, “Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation,” PLOS ONE, vol. 11, no. 11, p. e0166017, Nov. 2016.
[36]Y. Wu, Y. Ding, and J. Feng, “SMOTE-Boost-based sparse Bayesian model for flood prediction,” J Wireless Com Network, vol. 2020, no. 1, p. 78, Dec. 2020.
[37]H. Kaur, H. S. Pannu, and A. K. Malhi, “A Systematic Review on Imbalanced Data Challenges in Machine Learning: Applications and Solutions,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–36, Jul. 2020.
[38]N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” jair, vol. 16, pp. 321–357, Jun. 2002.
[39]Z. Chen, L. Zhou, and W. Yu, “ADASYN−Random Forest Based Intrusion Detection Model,” in 2021 4th International Conference on Signal Processing and Machine Learning, Beijing China: ACM, Aug. 2021, pp. 152–159.
[40]A. Abdelkhalek and M. Mashaly, “Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning,” J Supercomput, vol. 79, no. 10, pp. 10611–10644, Jul. 2023.
[41]G. Sah, S. Singh, and S. Banerjee, “Intrusion Detection System Using Classification Algorithms with Feature Selection Mechanism over Real-time Data Traffic,” Jul. 2022.
[42]R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid, “Features Dimensionality Reduction Approaches for Machine Learning Based Network Intrusion Detection,” Electronics, vol. 8, no. 3, p. 322, Mar. 2019.
[43]A. Rosay, E. Cheval, F. Carlier, and P. Leroux, “Network Intrusion Detection: A Comprehensive Analysis of CIC-IDS2017:,” 2022, pp. 25–36.
[44]M. M. Rashid, J. Kamruzzaman, M. M. Hassan, T. Imam, and S. Gordon, “Cyberattacks Detection in IoT-Based Smart City Applications Using Machine Learning Techniques,” IJERPH, vol. 17, no. 24, p. 9347, Dec. 2020.
[45]X. Liu, T. Li, R. Zhang, D. Wu, Y. Liu, and Z. Yang, “A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection,” Security and Communication Networks, vol. 2021, pp. 1–15, Jul. 2021.
[46]S. M. Kasongo and Y. Sun, “Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-NB15 Dataset,” J Big Data, vol. 7, no. 1, p. 105, Dec. 2020.
[47]R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019.
[48]T.-C. Vuong, H. Tran, M. X. Trang, V.-D. Ngo, and T. V. Luong, “A Comparison of Feature Selection and Feature Extraction in Network Intrusion Detection Systems,” in 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Chiang Mai, Thailand: IEEE, Nov. 2022, pp. 1798–1804. |