參考文獻 |
1. Yu, Y.-T. (2022). 應用案例式推理於問題管理系統之研究-以筆記型電腦產品為例. National Central University.
2. Abdul Majid, M., & Romli, A. (2019). Case based reasoning for green information systems infusion and assimilation among IT professionals in university campuses. Scientia Iranica, 26(Special Issue on: Socio-Cognitive Engineering), 127–135.
3. Aboutaleb, A., Fayed, A., Ismail, D., GabAllah, N. A., Rafea, A., & Sakr, N. (2021). BERT BiLSTM-Attention Similarity Model. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 366–371.
4. Acid, S., De Campos, L. M., Fernández‐Luna, J. M., & Huete, J. F. (2003). An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems, 18(2), 251–265.
5. Ahn, J., Ji, S.-H., Ahn, S. J., Park, M., Lee, H.-S., Kwon, N., Lee, E.-B., & Kim, Y. (2020). Performance evaluation of normalization-based CBR models for improving construction cost estimation. Automation in Construction, 119, 103329.
6. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K.-D., Dengel, A., & Petridis, M. (2020). Advanced similarity measures using word embeddings and siamese networks in CBR. Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 2, 449–462.
7. Andreasen, T., Christiansen, H., & Larsen, H. L. (1998). Flexible Query Answering Systems: Third International Conference, FQAS’98, Roskilde, Denmark, May 13-15, 1998, Proceedings (Issue 1495). Springer Science & Business Media.
8. Anthony Jr, B. (2023). Employing case-based reasoning to provide knowledge for sustainable regional development. In Knowledge Management for Regional Policymaking (pp. 45–59). Springer.
9. Ayed, S. B., Elouedi, Z., & Lefevre, E. (2017). ECTD: evidential clustering and case types detection for case base maintenance. 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 1462–1469.
10. Besbes, G., & Baazaoui-Zghal, H. (2015). Modular ontologies and CBR-based hybrid system for web information retrieval. Multimedia Tools and Applications, 74, 8053–8077.
11. Biswas, S. K., Sinha, N., & Purkayastha, B. (2014). A review on fundamentals of case-based reasoning and its recent application in different domains. International Journal of Advanced Intelligence Paradigms, 6(3), 235–254.
12. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.
13. Briand, L. C., Morasca, S., & Basili, V. R. (1996a). Property-based software engineering measurement. IEEE Transactions on Software Engineering, 22(1), 68–86. https://doi.org/10.1109/32.481535
14. Briand, L. C., Morasca, S., & Basili, V. R. (1996b). Property-based software engineering measurement. IEEE Transactions on Software Engineering, 22(1), 68–86.
15. Burke, R. D., Hammond, K. J., Kulyukin, V., Lytinen, S. L., Tomuro, N., & Schoenberg, S. (1997). Question answering from frequently asked question files: Experiences with the faq finder system. AI Magazine, 18(2), 57–57.
16. Carswell, J. D., Wilson, D. C., & Bertolotto, M. (2002). Digital image similarity for geo-spatial knowledge management. Advances in Case-Based Reasoning: 6th European Conference, ECCBR 2002 Aberdeen, Scotland, UK, September 4–7, 2002 Proceedings 6, 58–72.
17. Ceballos, R., Abreu, R., Varela-Vaca, Á. J., & Gasca, R. M. (2019). Model-based software debugging. Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative Approaches, 365–387.
18. Chebli, A., Djebbar, A., & Merouani, H. F. (2022). Case Base Maintenance: Clustering Informative, Representative and Divers Cases (C IRD). Proceedings of International Conference on Information Technology and Applications: ICITA 2021, 387–396.
19. Chergui, O., Begdouri, A., & Groux-Leclet, D. (2019). Integrating a Bayesian semantic similarity approach into CBR for knowledge reuse in Community Question Answering. Knowledge-Based Systems, 185, 104919.
20. Chow, H. K., Choy, K. L., Lee, W. B., Chan, F. T., & Lam, T. C. (2005). Design of a case‐based logistics strategy system–an integrated approach. Expert Systems, 22(4), 173–192.
21. Costa, C. A., Luciano, M. A., Lima, C. P., & Young, R. I. (2012). Assessment of a product range model concept to support design reuse using rule based systems and case based reasoning. Advanced Engineering Informatics, 26(2), 292–305.
22. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv Preprint ArXiv:1810.04805.
23. Do, P.-K., Nguyen, H.-T., Tran, C.-X., Nguyen, M.-T., & Nguyen, M.-L. (2017). Legal question answering using ranking SVM and deep convolutional neural network. ArXiv Preprint ArXiv:1703.05320.
24. Feng, Y., Naeem, M. A., Mirza, F., & Tahir, A. (2020). Reply using past replies—A deep learning-based e-mail client. Electronics, 9(9), 1353.
25. Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity approaches. International Journal of Computer Applications, 68(13), 13–18.
26. Gu, M., Xu, A., Yuan, F., He, X., & Cui, Z. (2021). An improved CBR model using time-series data for predicting the end-point of a converter. ISIJ International, 61(10), 2564–2570.
27. He, A., Gaeddert, J., Bae, K. K., Newman, T. R., Reed, J. H., Morales, L., & Park, C.-H. (2009). Development of a case-based reasoning cognitive engine for ieee 802.22 wran applications. ACM SIGMOBILE Mobile Computing and Communications Review, 13(2), 37–48.
28. Hindle, A., Alipour, A., & Stroulia, E. (2016). A contextual approach towards more accurate duplicate bug report detection and ranking. Empirical Software Engineering, 21, 368–410.
29. Hong, Y., Xie, H., Bhumbra, G., & Brilakis, I. (2021). Comparing natural language processing methods to cluster construction schedules. Journal of Construction Engineering and Management, 147(10), 04021136.
30. Hove, S. E., & Anda, B. (2005). Experiences from conducting semi-structured interviews in empirical software engineering research. 11th IEEE International Software Metrics Symposium (METRICS’05), 10 pp. – 23. https://doi.org/10.1109/METRICS.2005.24
31. Hu, W.-C., Yu, D.-F., & Jiau, H. C. (2010). A faq finding process in open source project forums. 2010 Fifth International Conference on Software Engineering Advances, 259–264.
32. Huang, Z., Fan, H., & Shen, L. (2019). Case-based reasoning for selection of the best practices in low-carbon city development. Frontiers of Engineering Management, 6(3), 416–432.
33. Huo, Y., Liu, J., Xiong, J., Xiao, W., & Zhao, J. (2022). Machine learning and CBR integrated mechanical product design approach. Advanced Engineering Informatics, 52, 101611.
34. Khilji, M. D. (2023). Features matching using natural language processing. ArXiv Preprint ArXiv:2303.12804.
35. Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence Review, 6(1), 3–34.
36. Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE Intelligent Systems, 31(6), 5–14.
37. Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. International Conference on Machine Learning, 1188–1196.
38. Lenz, M., Hübner, A., & Kunze, M. (1998). Textual cbr. Case-Based Reasoning Technology: From Foundations to Applications, 115–137.
39. Leśniak, A., & Zima, K. (2018). Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability, 10(5), 1608.
40. Marjai, P., Lehotay-Kéry, P., & Kiss, A. (2021). Document similarity for error prediction. Journal of Information and Telecommunication, 5(4), 407–420.
41. Mata, A., Baruque, B., Pérez-Lancho, B., Corchado, E., & Corchado, J. M. (2010). Forest fire evolution prediction using a hybrid intelligent system. Balanced Automation Systems for Future Manufacturing Networks: 9th IFIP WG 5.5 International Conference, BASYS 2010, Valencia, Spain, July 21-23, 2010. Proceedings, 64–71.
42. Mayer, W., & Wotawa, F. (2021). Artificial intelligence methods for software debugging. In Artificial Intelligence Methods For Software Engineering (pp. 401–435).
43. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. ArXiv Preprint ArXiv:1301.3781.
44. Miranda, M., Sánchez-Ruiz, A. A., & Peinado, F. (2021). Interactive Explainable Case-Based Reasoning for Behavior Modelling in Videogames. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 1263–1270.
45. Moreo, A., Romero, M., Castro, J. L., & Zurita, J. M. (2012). FAQtory: A framework to provide high-quality FAQ retrieval systems. Expert Systems with Applications, 39(14), 11525–11534.
46. Palilingan, T., & Tomatala, M. F. (2022). Case-Based Reasoning for Dengue Hemorrhagic Fever Diagnosis Using Manhattan Distance. 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 256–261.
47. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543.
48. Plansangket, S., & Gan, J. Q. (2015). A query suggestion method combining TF-IDF and Jaccard Coefficient for interactive web search. Artificial Intelligence Research, 4(2).
49. Poels, G., & Dedene, G. (2000). Distance-based software measurement: Necessary and sufficient properties for software measures. Information and Software Technology, 42(1), 35–46. https://doi.org/10.1016/S0950-5849(99)00053-1
50. Pusztová, Ľ., Babič, F., Paralič, J., & Paraličová, Z. (2019). How to Improve the Adaptation Phase of the CBR in the Medical Domain. Machine Learning and Knowledge Extraction: Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, August 26–29, 2019, Proceedings 3, 168–177.
51. Reuss, P., Witzke, C., & Althoff, K.-D. (2017). Dependency modeling for knowledge maintenance in distributed CBR systems. Case-Based Reasoning Research and Development: 25th International Conference, ICCBR 2017, Trondheim, Norway, June 26-28, 2017, Proceedings 25, 302–314.
52. Richter, M. M., Weber, R. O., Richter, M. M., & Weber, R. O. (2013). Conversational CBR. Case-Based Reasoning: A Textbook, 465–485.
53. Rieck, K., & Laskov, P. (2008). Linear-Time Computation of Similarity Measures for Sequential Data. Journal of Machine Learning Research, 9(1).
54. Romero, M., Moreo, A., & Castro, J. L. (2013). A cloud of FAQ: A highly-precise FAQ retrieval system for the Web 2.0. Knowledge-Based Systems, 49, 81–96.
55. Silva, H., António, N., & Bacao, F. (2022). A Rapid Semi-automated Literature Review on Legal Precedents Retrieval. Progress in Artificial Intelligence: 21st EPIA Conference on Artificial Intelligence, EPIA 2022, Lisbon, Portugal, August 31–September 2, 2022, Proceedings, 53–65.
56. Smiti, A., & Elouedi, Z. (2018). SCBM: soft case base maintenance method based on competence model. Journal of Computational Science, 25, 221–227.
57. Sujo, J. C. M. (2023). BRAIN L: A book recommender system. ArXiv Preprint ArXiv:2302.00653.
58. Sun, C., Lo, D., Khoo, S.-C., & Jiang, J. (2011). Towards more accurate retrieval of duplicate bug reports. 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), 253–262.
59. Tehrani, A. R. F., & Mohamed, F. Z. M. (2011). A CBR-based Approach to ITIL-based Service Desk. Journal of Emerging Trends in Computing and Information Sciences, 2(10), 476–484.
60. Terra, E., Mohammed, A., & Hefny, H. A. (2020). Glosophia: An enhanced textual based clustering approach by word embeddings. Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019, 700–710.
61. Tung, Y.-H., Tseng, S.-S., Weng, J.-F., Lee, T.-P., Liao, A. Y. H., & Tsai, W.-N. (2010). A rule-based CBR approach for expert finding and problem diagnosis. Expert Systems with Applications, 37(3), 2427–2438. https://doi.org/10.1016/j.eswa.2009.07.037
62. Wang, H.-J., Chiou, C.-W., & Juan, Y.-K. (2008). Decision support model based on case-based reasoning approach for estimating the restoration budget of historical buildings. Expert Systems with Applications, 35(4), 1601–1610.
63. Wei, W., & Liang, Y. (2022). A Siamese network framework for bank intelligent Q&A prediction. Journal of Forecasting, 41(8), 1570–1577.
64. Winiwarter, W. (2000). Adaptive natural language interfaces to FAQ knowledge bases. Data & Knowledge Engineering, 35(2), 181–199.
65. Yang, L., Jin, R., & Sukthankar, R. (2012). Bayesian active distance metric learning. ArXiv Preprint ArXiv:1206.5283.
66. Yang, S.-Y., Liao, P.-C., & Ho, C.-S. (2005). An Ontology-Supported Case-Based Reasoning Technique for FAQ Proxy Service. SEKE, 639–644.
67. Yogarajan, V., Gouk, H., Smith, T., Mayo, M., & Pfahringer, B. (2020). Comparing high dimensional word embeddings trained on medical text to bag-of-words for predicting medical codes. Intelligent Information and Database Systems: 12th Asian Conference, ACIIDS 2020, Phuket, Thailand, March 23–26, 2020, Proceedings, Part I 12, 97–108.
68. Yu, L., & Li, M. (2023). A case-based reasoning driven ensemble learning paradigm for financial distress prediction with missing data. Applied Soft Computing, 110163.
69. Zhang, L. (2021). Research on case reasoning method based on TF-IDF. International Journal of System Assurance Engineering and Management, 12, 608–615.
70. Zhang, Y., Chen, Q., Yang, Z., Lin, H., & Lu, Z. (2019). BioWordVec, improving biomedical word embeddings with subword information and MeSH. Scientific Data, 6(1), 52. |