博碩士論文 110454022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.149.249.84
姓名 張立昌(Chang-Li Chang)  查詢紙本館藏   畢業系所 產業經濟研究所在職專班
論文名稱 燃油價格指數與海運運價之間的關聯性
相關論文
★ 投資者之風險屬性與基金理財績效之實證研究★ 企業經營績效的影響分析-以台灣醫療器材產業為例
★ 銀行財富管理業務手續費收入影響因素之實證研究★ 母親的教育程度對兒童醫療利用行為之影響
★ 地區醫院的存亡與轉型★ 教育對健康的影響—臺灣地區老人之實證研究
★ 醫院購置高科技醫療儀器與市場結構的關聯★ 台灣地區醫院最適效率規模的估計-倖存者分析方法應用
★ 出口與生產力的關聯 —台灣電子業廠商之實證研究★ 社會資本與家庭結構對健康及醫療資源利用之影響 —台灣地區老人之實證研究
★ 醫療利用可近性—台灣老人之實證研究★ 父母健康知識與其子女健康狀況之關聯
★ 臺灣股市之效率檢定及多因素模型之探討—長期追蹤資料之計量分析★ 醫療資源與國人健康的關聯
★ 青少年菸害的健康風險認知與吸菸行為的關聯─台灣地區的實證研究★ 醫療資源可近性對個人醫療利用的影響 ――台灣地區的實證研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用時間序列方法,包括單根檢定、共整合檢定、Granger因果關係檢定、鄒檢定、向量自我迴歸模型、向量誤差修正模型,以探討燃油價格與海運運價及海運運價彼此間的關聯性。其中,海運燃油價格以IFO380燃油價格指數,海運運價則分別包括:上海出口集裝箱運價指數(SCFI)、波羅的海乾散貨運價指數(BDI)及波羅的海油輪運價指數(BDTI)。研究期間為2017年1月1日至2022年12月31日共六年之週資料。
實證分析結果發現:(1) 所有研究變數皆為非定態(nonstationary),須經過一階差分才能呈現定態。(2) 透過Johansen共整合檢定,僅有SCFI與其他運價指數與燃油指數在結構轉變時間點後未有共整合關係,其餘運價指數與燃油指數皆具有共整合關係。(3) 經過鄒檢定發現序列皆具有結構轉變,其中:IFO380燃油價格指數的結構轉變時間點在2020年3月9日,SCFI的結構轉變時間點在2020年8月31日,BDTI的結構轉變時間點在2020年6月1日,BDI的結構轉變時間點在2020年6月15日。(4) 我們利用VECM與VAR模型分別在結構轉變點前、後,來捕捉各變數之間的短期關係,發現在結構轉變點前後變數間的短期關係有明顯的變化,我們因此推測重大事件的發生,可能會改變變數間的短期關係。(5) 各航運市場在結構轉變時間點前後的Granger因果關係如下:在貨櫃市場中,不論在結構轉變時間點之前、後,貨櫃運價指數SCFI皆會領先於燃油價格指數IFO380與BDTI指數。在散裝市場中,其在結構轉變時間點前,散裝運價指數BDI領先於IFO380指數。然而在結構轉變時間點後,BDI指數與IFO380指數則無granger因果關係。在油輪市場中,其在結構轉變時間點前,IFO380指數領先於油輪運價指數BDTI。而在結構轉變時間點後,則轉為BDTI指數領先於IFO380指數。
本研究希冀提供航商、船東及投資者透過追蹤燃油價格與航運價格及航運價格彼此之間的關係,以提前佈局船隊經營及達成降低投資風險的目標。
摘要(英) This study uses time series methods, including unit root test, cointegration test, granger causality, chow test, vector autoregressive model, and vector error correction model to explore the interaction between bunker fuel prices and freight rates. We selected IFO380 as the shipping bunker prices, and the shipping price index consists of three major freight indexes: Shanghai Containerized Freight Index (SCFI), Baltic Dry Index (BDI), Baltic Dirty Tanker Index (BDTI). The study period was from January 1, 2017, to December 31 2022 week of data.
The results of the empirical analysis found that: 1. the variables are non-stationary state, rendered after a first-order differential steady state. 2. Through Johansen′s cointegration test, only SCFI is not co-integrated with other freight rates and bunker indices after the structural break. In contrast, all other freight rates and bunker indices are co-integrated. 3. The Chow test shows that all the variables have structural breaks. The structural break date of IFO380 is on March 9, 2020; SCFI is on August 31, 2020; BDTI is on June 1, 2020; and BDI is on June 15, 2020. 4. We use the VECM and VAR models to capture the short-term relationships between variables before and after the structural break point and find significant changes in the short-term relationships between variables before and after the structural break point. Therefore, we hypothesize that the occurrence of a major event may change the short-term relationship between variables. 5. The Granger causality test for each shipping market before and after the structural breakpoint is as follows: In the container market, the SCFI leads the IFO380 and BDTI before and after the structural break point. In the bulk market, BDI leads IFO380 before the structural break point. However, there is no granger causality between BDI and IFO380 after the structural break point. In the tanker market, IFO380 leads BDTI before the structural break point, while BDTI leads IFO380 after the structural break point.
This study aims to allow carriers, shipowners, and investors to track the relationship between bunker prices and shipping prices to plan their fleet operations and achieve the goal of reducing investment risk.
關鍵字(中) ★ 燃油
★ 單根
★ 共整合
★ 鄒檢定
關鍵字(英) ★ VECM
★ SCFI
★ BDTI
★ BDI
★ VAR
★ chow test
論文目次 中文摘要...................................................i
Abstract................................................iii
誌謝......................................................v
目錄.....................................................vi
圖目錄...................................................vii
表目錄..................................................viii
第一章 緒論..............................................1
第一節 研究背景......................................1
第二節 研究動機..........................................2
第三節 研究目的..........................................5
第四節 研究架構與流程.....................................6
第二章 文獻回顧..........................................8
第三章 研究方法.......................................................18
第一節 單根檢定.....................................19
第二節 最適落後期數選取..............................21
第三節 鄒檢定......................................22
第四節 共整合檢定...................................22
第五節 Granger因果關係檢定..........................24
第六節 向量自我迴歸模型.............................25
第七節 向量誤差修正模型.............................27
第四章 資料來源與變數說明...............................29
第一節 研究資料來源................................29
第二節 敘述統計量..................................32
第五章 實證結果分析....................................34
第一節 單根檢定...................................34
第二節 鄒檢定.....................................37
第三節 Johansen共整合檢定.........................38
第四節 向量誤差修正模型與向量自我迴歸模型.............46
第五節 Granger因果關係檢定........................57
第六章 結論與建議.....................................64
第一節 結論......................................64
第二節 後續研究建議...............................67
參考資料與文獻..........................................69
參考文獻 一、中文文獻
1. 林書帆(2021),COVID-19疫情對海運運價的影響,國立清華大學全球營運管理碩士雙聯學位學程碩士論文。
2. 施慧潔(2015),中國出口貨櫃綜合運價指數與上海出口貨櫃綜合運價指數之關聯性研究,長榮大學航運管理學系碩士論文。
3. 許譽文(2009),海運燃油與燃油附加費之相關性探討—定期航運業之個案研究,國立臺灣海洋大學航運管理學系碩士論文。
4. 郭義隆、林遠哲和王棟華,「定期海運業者有關油價波動、燃油附加費及航速之相關性分析」,台北海洋技術學院學報, 5(2), 39-51頁,2012年9月。
5. 陳旭昇(2013),時間序列分析:總體經濟與財務金融之應用,東華書局。
6. 楊金樺(2008),定期船運價決定因素與趨勢預測之研究,國立交通大學運輸科技與管理學系碩士論文。
7. 楊奕農(2017),時間序列分析: 經濟與財務上之應用,三版,雙葉書廊。
8. 溫珮伶(2005),散裝海運市場運價決定機制及影響因素分析,中原大學國際貿易學系碩士論文。
9. 鄧毓廷(2017),國際原油、波羅的海運費指數和台灣運輸類股價指數連動關係之研究 - VAR模型之應用,國立臺北大學企業管理學系碩士論文。
10. 蕭力愷(2013),波羅的海運價指數、大宗物資價格與燃油價格關聯性之研究,國立臺灣海洋大學航運管理學系碩士論文。
11. 蕭堯仁(2013),散裝船運價與貨櫃船運價領先落後關係與波動傳遞效果之研究,國立臺灣海洋大學航運管理學系碩士論文。
12. 謝宗憲(2014),波羅的海運價指數與股價指數及原物料價格指數之關聯性,國立中正大學經濟學系碩士論文。
13. 簡彣如(2013),海運市場運價與原油價格之相互關係,國立臺灣海洋大學航運管理學系碩士論文。
二、英文文獻
1. Akaike, H. (1973), “Maximum likelihood identification of Gaussian autoregressive moving average models”. Biometrika, 60(2), 255-265.
2. Angelopoulos, J., Sahoo, S., & Visvikis, I. D. (2020). ”Commodity and transportation economic market interactions revisited: New evidence from a dynamic factor model.” Transportation Research Part E: Logistics and Transportation Review, 133, 101836.
3. Araz, O. M., Choi, T. M., Olson, D. L., & Salman, F. S. (2020). “Data Analytics for Operational Risk Management.” Decision Sciences, 51(6), 1316-1319.
4. Bacon, R. W. (1991). Rockets and feathers: the asymmetric speed of adjustment of UK retail gasoline prices to cost changes. Energy Economics, 13(3), 211-218.
5. Banerjee, D. D. (2020). “The other side of COVID-19: Impact on obsessive compulsive disorder (OCD) and hoarding.” Psychiatry Res, 288, 112966.
6. Box, G. E. P., & Jenkins, G. (1970). Time series analysis: forecasting and control
7. Chow, G. C. (1960). “Tests of Equality Between Sets of Coefficients in Two Linear Regressions.” Econometrica, 28(3), 591-605.
8. Corbett, J. J., & Winebrake, J. J. (2008). “Emissions tradeoffs among alternative marine fuels: total fuel cycle analysis of residual oil, marine gas oil, and marine diesel oil.” J Air Waste Manag Assoc, 58(4), 538-542.
9. De Vos, J. (2020). “The effect of COVID-19 and subsequent social distancing on travel behavior.” Transportation Research Interdisciplinary Perspectives, 5, 100121.
10. Dickey, D. A., & Fuller, W. A. (1979). “Distribution of the Estimators for Autoregressive Time Series With a Unit Root.” Journal of the American Statistical Association, 74(366), 427-431.
11. Dirzka, C., & Acciaro, M. (2022). “Global shipping network dynamics during the COVID-19 pandemic′s initial phases.” J Transp Geogr, 99, 103265.
12. Earnest, D. C., Yetiv, S., & Carmel, S. M. (2012). Contagion in the Transpacific Shipping Network: International Networks and Vulnerability Interdependence. International Interactions, 38(5), 571-596.
13. Engle, R. F., & Granger, C. W. J. (1987). “Co-Integration and Error Correction: Representation, Estimation, and Testing.” Econometrica, 55(2), 251-276.
14. Geman, H., & Smith, W. O. (2012). ”Shipping Markets and Freight Rates: An Analysis of the Baltic Dry Index.” The Journal of Alternative Investments, 15(1), 98-109,106.
15. Granger, C. W. J. (1969). “Investigating Causal Relations by Econometric Models and Cross-spectral Methods.” Econometrica, 37(3), 424-438.
16. Granger, C. W. J., & Newbold, P. (1974). “Spurious regressions in econometrics.” Journal of Econometrics, 2(2), 111-120.
17. Hotle, S., Murray-Tuite, P., & Singh, K. (2020). “Influenza risk perception and travel-related health protection behavior in the US: Insights for the aftermath of the COVID-19 outbreak.” Transportation Research Interdisciplinary Perspectives, 5, 100127.
18. IMF. (2022). World Economic Outlook.
19. Jing, L., Marlow, P. B., & Hui, W. (2008). “An analysis of freight rate volatility in dry bulk shipping markets.” Maritime Policy & Management, 35(3), 237-251.
20. Johansen, S., & Juselius, K. (1990). “Maximum Likelihood Estimation and Inference on Cointegration - with Applications to the Demand for Money.” Oxford Bulletin of Economics and Statistics, 52(2), 169-210.
21. Kasa, K. (1992). “Common stochastic trends in international stock markets.” Journal of Monetary Economics, 29(1), 95-124.
22. Khoi, B. H., & Long, N. N. (2020). “An Empirical Study about the Intention to Hoard Food during COVID-19 Pandemic.” Eurasia Journal of Mathematics, Science and Technology Education, 16(7).
23. Kite-Powell, H. L., & Countryman, C. E. (2019). Shipping and Ports☆. In J. K. Cochran, H. J. Bokuniewicz, & P. L. Yager (Eds.), Encyclopedia of Ocean Sciences (Third Edition) (pp. 570-578). Academic Press.
24. Li, X.-X., & Yip, T. L. (2021). “Dynamic interdependence and volatility spillovers across bunker fuel markets and shipping freight markets.” Maritime Policy & Management, 1-24.
25. Liu, T., Pan, B., & Yin, Z. (2020). „Pandemic, Mobile Payment, and Household Consumption: Micro-Evidence from China.” Emerging Markets Finance and Trade, 56(10), 2378-2389.
26. Lun, Lai, & Cheng. (2010). Shipping and Logistics Management.
27. Luo, M., Fan, L., & Liu, L. (2009). “An econometric analysis for container shipping market.” Maritime Policy & Management, 36(6), 507-523.
28. Michail, N. A., & Melas, K. D. (2020). “Shipping markets in turmoil: An analysis of the Covid-19 outbreak and its implications.” Transp Res Interdiscip Perspect, 7, 100178.
29. Monge, M. (2022). “Bunker fuel, commodity prices and shipping market indices following the COVID-19 pandemic. A time-frequency analysis.” International Economics, 172, 29-39.
30. Mukherjee, P. K., & Brownrigg, M. (2013). Farthing on International Shipping. Springer.
31. Nelson, C. R., & Plosser, C. R. (1982). “Trends and random walks in macroeconmic time series: Some evidence and implications.” Journal of Monetary Economics, 10(2), 139-162.
32. Notteboom, T. E., & Vernimmen, B. (2009). “The effect of high fuel costs on liner service configuration in container shipping.” Journal of Transport Geography, 17(5), 325-337.
33. Ozili, P. K. (2022). Global Economic Consequence of Russian Invasion of Ukraine.
34. Peter, C. B. P., & Perron, P. (1988). “Testing for a Unit Root in Time Series Regression.” Biometrika, 75(2), 335-346.
35. Ronen, D. (2011). “The effect of oil price on containership speed and fleet size.” Journal of the Operational Research Society, 62(1), 211-216.
36. Said, E. S., & Dickey, D. A. (1984). “Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order.” Biometrika, 71(3), 599-607.
37. Sims, C. A. (1980). “Macroeconomics and Reality.” Econometrica, 48(1), 1-48.
38. Stopford, M. (2008). Maritime Economics (3rd ed.).
39. Sun, X., Haralambides, H., & Liu, H. (2019). “Dynamic spillover effects among derivative markets in tanker shipping.” Transportation Research Part E: Logistics and Transportation Review, 122, 384-409.
40. UNCTAD (2022). Review of Maritime Transport
41. UNCTAD Secretariat (2010). Oil Prices and Maritime Freight Rates- An Empirical Investigation.
42. UNSDG (2020). A UN Framework for the Immediate Socio-Economic Response to COVID-19.
43. Wolff, F.-C., & Cariou, P. (2006). “An Analysis of Bunker Adjustment Factors and Freight Rates in the Europe/Far East Market (2000–2004).” Maritime Economics and Logistics, 8, 187-201.
44. Wooldridge, J. M. (2020). Introductory Econometrics A Modern Approach (7th ed.).
45. World Bank Group (2023) Global Economic Prospects.
46. World Economic Forum (2020). Managing COVID-19: How the pandemic disrupts global value chains.
47. Yin, J., & Shi, J. (2018). “Seasonality patterns in the container shipping freight rate market.” Maritime Policy & Management, 45(2), 159-173.
三、相關網站
1. 上海航運交易所(2023),網址:
https://www.sse.net.cn/home
指導教授 蔡偉德 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明