摘要(英) |
In this paper, we use D company’s large-scale Automated storage system (Automated Storage / Retrieval System, AS/RS) warehouse in Taoyuan City Yangmei District as example, propose a deep learning method for temperature estimation. The method is based on Long Short-Term Memory (LSTM) model and Recurrent Neural Network (RNN) by using 7-days temperature mapping records. Using LSTM model with prior 150 hours key spots’ EDLM(Electronic data logging monitor)temperature data to predict future 18 hours temperature, then using RNN model with LSTM key spots’ predict data to estimate future 18 hours temperature of multiple spots in AS/RS. To validate the estimation result, we use the Real-time sensor temperature record collected in Building Management System (BMS) as validation data. Comparing the Max AE (Max Absolute Error) of LSTM and RNN model.
According to the result, no matter checking Models’ Max AE or RMSE, the methods all comply RMSE less than 0.20 and Max AE less than MPE (Maximum Permissible Error) which is 0.50℃. That also proves the feasibility of using real-time sensors as temperature mapping method, to replace large quantity of EDLM in Pharmaceutical warehouse. At the end of this paper, we describe some observations and potential variation, as the reference information for future studies. |
參考文獻 |
[1] 衛生福利部,《西藥藥品優良製造規範(第三部:運銷)》,2015年7月。
[2] “Supplement 7- Qualification of temperature-controlled storage areas“, Technical supplement to WHO Technical Report Series, No. 961, 2011, Annex 9: Model guidance for the storage and transport of time- and temperature-sensitive pharmaceutical products, May 2015
[3] “Supplement 8- Temperature mapping of storage areas“, Technical supplement to WHO Technical Report Series, No. 961, 2011, Annex 9: Model guidance for the storage and transport of time- and temperature-sensitive pharmaceutical products, May 2015
[4] WHO Technical Report Series 953, Annex 2, Appendix 1: Stability testing of active pharmaceutical ingredients and finished pharmaceutical products: Stability conditions for WHO Member States by Region, 2018 (Update March 2021)
[5] 簡鈺璇,〈一個倉儲部門,竟能長成「年營收8億」子公司!聯強通達怎麼做到?〉,商業週刊,2022年2月,
取自https://www.businessweekly.com.tw/management/blog/3009178
[6] 富邦媒體科技,〈 自動化物流中心簡介〉,富邦媒體科技企業官網,2020年,
取自https://corp.momo.com.tw/market/logistics/
[7] 蕭閔云, 〈全聯重砸9.8億元拚物流!高雄岡山廠升級自動倉儲,背後運作大公開〉,數位時代Business Next,2020年7月,
取自https://www.bnext.com.tw/article/58653/pxmart-automatic-delivery
[8] 經濟部能源局委託工業技術研究院綠能與環境研究所,《無塵室節約能源技術手冊》,2009年11月29日。
[9] Whyte W., C “Cleanroom Technology Fundamentals of Design, Testing and Operation”, Edition, 1st., 2001
[10] Archtoolbox, ”Heating, Ventilation, and Air Conditioning-Laminar vs Turbulent Flow”, May 29, 2021,
From : https://www.archtoolbox.com/laminar-vs-turbulent-flow/
[11] 黃士嘉、林邑撰著,《輕鬆學會Google TensorFlow人工智慧深度學習實作開發》,第三版,新北市:博碩文化股份有限公司,2021年1月。
[12] Andrew Tch, ”The mostly complete chart of Neural Networks, explained ” , Towards Data Science, Aug 4, 2017,
From : https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
[13] iT邦幫忙,〈模型中的激勵函數〉 ,電週文化事業,2019年9月,
取自https://ithelp.ithome.com.tw/articles/10217168
[14] 斎藤康毅著,吳嘉芳譯,《Deep Learning:用Python進行深度學習的基礎理論實作》,歐萊禮出版社,2017年8月。
[15] 雞雞與兔兔的工程世界,〈[機器學習ML NOTE]SGD, Momentum, AdaGrad, Adam Optimizer〉,2018年8月,取自https://medium.com/%E9%9B%9E%E9%9B%9E%E8%88%87%E5%85%94%E5%85%94%E7%9A%84%E5%B7%A5%E7%A8%8B%E4%B8%96%E7%95%8C/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92ml-note-sgd-momentum-adagrad-adam-optimizer-f20568c968db
[16] 維基百科,〈Recurrent neural network〉,
取自https://en.wikipedia.org/wiki/Recurrent_neural_network
[17] iT邦幫忙,〈Day 14:循環神經網路(Recurrent Neural Network, RNN) 〉,電週文化事業,2017年12月,
取自https://ithelp.ithome.com.tw/articles/10193469
[18] Andrej Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks”, May 21, 2015.
From : https://karpathy.github.io/2015/05/21/rnn-effectiveness/
[19] Sepp Hochreiter,and Jurgen Schmidhuber, “LONG SHORT-TERM MEMORY”,
Neural Computation 9(8):1735-80 : 1735-1780, Dec 1997.
[29] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, Jürgen Schmidhuber, “LSTM: A Search Space Odyssey”, IEEE Transactions on Neural Networks and Learning Systems, Volume: 28 Issue: 10, October 2017, Page 2222-2232, July 2016.
[21] Zhen Fang, Nicolas Crimier, Lisa Scanu, Alphanie Midelet, Amr Alyafi, Benoit Delinchant, “Multi-zone indoor temperature prediction with LSTM-based sequence to sequence model”, Energy and Buildings, Elsevier, 245, pp.111053-HAL open science ID hal-03625852, 2021
[22] Malini M. Patil, P.M. Rekha, Arun Solanki, Anand Nayyar, Basit Qureshi, “Big Data Analytics Using Swarm-Based Long Short-Term Memory for Temperature Forecasting” , 27 Sep 2021.
[23] 賴彥鈞、賴思璇、徐松圻:〈運用RNN及LSTM預測台灣山區降雨雨場分布〉,朝陽科技大學營建工程系,第 18 屆大地工程學術研究討論會論文集,2020年9月。
[24] 黃隆明、古緯中:〈應用倒傳遞類神經網路於 PM10 預測之研究〉,國立中興大學水土保持學系,水土保持學報, 第44卷 第04期 Page(s) 341-360,2012年。
[25] 董雲春:〈On The Assessment of Turbulent Type Clean Room Performance with the Aid of Numerical Simulation〉,國立台北科技大學冷凍空調工程系碩士學位論文,2012年6月。
[26] Amazon Web Services (AWS),〈什麼是Python?>,
取自https://aws.amazon.com/tw/what-is/python/
[27] Keras Documentation,
取自https://keras.io/ |