參考文獻 |
[1.1] S. Yu, W. Shim, X. Peng and Y. Luo, “RRAM for Compute-in-Memory: From Inference to Training,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2753-2765, 2021, doi: 10.1109/TCSI.2021.3072200.
[1.2] T. W. Hickmott, “Low‐frequency negative resistance in thin anodic oxide films,” Journal of Applied Physics 33.9, vol33, no. 9, pp. 2669-2682, 1962, doi: 10.1063/1.1702530.
[1.3] J. G. Simmons and R. R. Verderbert, “New conduction and reversible memory phenomena in thin insulating films,” Proceedings of Royal Society of London., Series A, Mathematical and Physical Sciences, vol. 301, pp. 77 – 102, 1967, doi: 10.1098/rspa.1967.0191.
[1.4] G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, “Metal oxide RRAM switching mechanism based on conductive filament microscopic properties,” in International Electron Devices Meeting, pp. 19.6.1-19.6.4, 2010, doi: 10.1063/1.3671565.
[1.5] S. Q. Liu, N. J. Wu, A. Ignatieva, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Applied Physic Letters, vol. 76, no. 19, pp. 2749 – 2751, 2000, doi: 10.1063/1.126464.
[1.6] Y. Deng, P. Huang, B. Chen, X. Yang, B. Gao, J. Wang, L. Zeng, G. Du, J. Kang, X. Liu, “RRAM crossbar array with cell selection device: A device and circuit interaction study,” in IEEE transactions on Electron Devices, pp. 719-726, 2012, doi: 10.1109/TED.2012.2231683.
[1.7] F. Zahoor, T. Z. A. Zulkifil, F. A. Khanday, A. A. Fida, “Low-power RRAM device based 1T1R array design with CNTFET as access device.” in IEEE Student Conference on Research and Development (SCOReD), pp. 280-283, 2019, doi: 10.1109/SCORED.2019.8896306.
[1.8] K. Sungho, J. Zhou, and W. Lu, “Crossbar RRAM arrays: Selector device requirements during write operation,” in IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2820-2826, 2014, doi: 10.1109/TED.2014.2327514.
[1.9] P. Y. Chen, S. Yu, “Compact Modeling of RRAM Devices and Its Applications in 1T1R and 1S1R Array Design,” in IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4022-4028, 2015, doi: 10.1109/TED.2015.2492421.
[1.10] G. Q. Bi, M. M Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,” Journal of neuroscience, pp. 10464-10472, 1998, doi: 10.1523/JNEUROSCI.18-24-10464.1998.
[1.11] A. Chen, “Comprehensive assessment of RRAM-based PUF for hardware security applications,” in IEEE International Electron Devices Meeting (IEDM), pp. 10.7.1-10.7.4, 2015, doi: 10.1109/IEDM.2015.7409672.
[1.12] M. S. Equbal, T. Ketkar and S. Sahay, “Hybrid CMOS-RRAM True Random Number Generator Exploiting Coupled Entropy Sources,” in IEEE Transactions on Electron Devices, vol. 70, no. 3, pp. 1061-1066, March 2023, doi: 10.1109/TED.2023.3241122.
[1.13] B. Lin, B. Gao, Y. Pang, J. Tang, H. Qian and H. Wu, “A Unified Memory and Hardware Security Module Based on the Adjustable Switching Window of Resistive Memory,” in IEEE Journal of the Electron Devices Society, vol. 8, pp. 1257-1265, 2020, doi: 10.1109/JEDS.2020.3019266.
[1.14] B. Gao, B. Lin, X. Li, J. Tang, H. Qian and H. Wu, “A Unified PUF and TRNG Design Based on 40-nm RRAM With High Entropy and Robustness for IoT Security,” in IEEE Transactions on Electron Devices., vol. 69, no. 2, pp. 536-542, 2022, doi: 10.1109/TED.2021.3138365.
[2.1] C. J. Lin, W. Y. Lee, C. J. Lin and Y. C. King, “3D Stackable Via RRAM Cells by Cu BEOL Process in FinFET CMOS Technologies,” 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 2020, pp. 31-32, doi: 10.1109/VLSI-TSA48913.2020.9203679.
[2.2] H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai, “Low-power switching of nonvolatile resistive memory
using Hafnium oxide,” Japanese Journal of Applied Physics., vol. 46, no. 4B, pp. 2175 – 2179, 2007, doi: 10.1143/JJAP.46.2175.
[2.3] R. Govindaraj, S. Ghosh and S. Katkoori, “CSRO-Based Reconfigurable True Random Number Generator Using RRAM,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2661-2670, Dec. 2018, doi: 10.1109/TVLSI.2018.2823274.
[2.4] B. Lin, B. Gao, Y. Pang, W. Zhang, J. Tang, H. Qian, H. Wu, “A High-performance and Calibration-free True Random Number Generator Based on the Resistance Perturbation in RRAM Array,” 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 38.6.1-38.6.4, doi: 10.1109/IEDM13553.2020.9371891.
[2.5] K. Jan, S. Datta, “Probabilistic computing with p-bits,” Applied Physics Letters, volume 119, issue 15, pp. 150503.1-150593.7, 2021, doi: 10.1063/5.0067927.
[2.6] M. Zhao, H. Wu, B. Gao, X. Sun, Y. Liu, P. Yao, Y. Xi, X. Li, Q. Zhang, K. Wang, S. Yu, H. Qian, "Characterizing Endurance Degradation of Incremental Switching in Analog RRAM for Neuromorphic Systems," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 20.2.1-20.2.4, doi: 10.1109/IEDM.2018.8614664.
[2.7] B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sin, X. Y. Liu, R. Q Han, J. F. Kang, B. Yu, Y. Y. Wang, “Oxide-based RRAM switching mechanism: A new ion-transport-recombination model,” IEEE International Electron Devices Meeting, 2008, pp. 1-4, doi: 10.1109/IEDM.2008.4796751.
[2.8] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories – nanoionics mechanisms, prospects, and challenges,” Advanced Materials, vol. 21, pp. 2632 – 2663, 2009, doi: 10.1002/adma.200900375.
[2.9] Z. Alamgir, K. Beckmann, J. S. Holt, N. C. Cady, “Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM,” Applied Physics Letters, vol. 111, issue 6, 2017, doi: 10.1063/1.4993058.
[2.10] B. Q. Le, A. Grossi, E. Vianello, T. Wu, G. Lama, E. Beigne, H. S. Wong, S. Mitra, “Resistive RAM With Multiple Bits Per Cell: Array-Level Demonstration of 3 Bits Per Cell,” in IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 641-646, 2019, doi: 10.1109/TED.2018.2879788.
[3.1] P. R. Saulson, “Thermal noise in mechanical experiments,” Physical Review D, vol. 42, issue 8, 1990, doi: 10.1103/PhysRevD.42.2437.
[3.2] D. Veksler, G. Bersuker, L. Vandelli, A. Padovani, L. Larcher, A. Muraviev, B. Chakrabarti, E. Vogel, D. C. Gilmer, P. D. Kirsch, “Random telegraph noise (RTN) in scaled RRAM devices,” IEEE International Reliability Physics Symposium (IRPS), pp. MY.10.1-MY.10.4, 2013, doi: 10.1109/IRPS.2013.6532101.
[3.3] N. Hubballi, M. Swarnkar and M. Conti, “BitProb: Probabilistic Bit Signatures for Accurate Application Identification,” in IEEE Transactions on Network and Service Management, vol. 17, no. 3, pp. 1730-1741, 2020, doi: 10.1109/TNSM.2020.2999856.
[3.4] W. Shockley, W. T. Read, Jr, “Statistics of the recombinations of holes and
electrons,” Physical Review Letters, vol. 87, pp. 835-842, 1952, doi: 10.1103/PhysRev.87.835.
[3.5] A. Yonezawa, A. Teramoto, T. Obara, R. Kuroda, S. Sugawa and T. Ohmi, “The study of time constant analysis in random telegraph noise at the subthreshold voltage region,” 2013 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2013, pp. XT.11.1-XT.11.6, doi: 10.1109/IRPS.2013.6532126.
[3.6] F. M. Puglisi, L. Larcher, A. Padovani and P. Pavan, “A Complete Statistical Investigation of RTN in HfO2-Based RRAM in High Resistive State,” in IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2606-2613, 2015, doi: 10.1109/TED.2015.2439812.
[5.1] K. Yang, D. Blaauw and D. Sylvester, “A robust −40 to 120°C all-digital true random number generator in 40nm CMOS,” 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 2015, pp. C248-C249, doi: 10.1109/VLSIC.2015.7231275.
[5.2] Y. Xiao, E. R. Hsieh, T. P. Chen, S. A. Huang, T. J. Chen, and S. S. Chung,
“Novel Concept of the Transistor Variation Directed Toward the Circuit Implementation of Physical Unclonable Function (PUF) and True-random-number-generator,” IEEE International Electron Devices Meeting (IEDM), 2019, pp. 21.5.1-21.5.4, doi: 10.1109/IEDM19573.2019.8993496.
[5.3] S. T. Chandrasekaran, V. E. G. Karnam and A. Sanyal, “0.36-mW, 52-Mbps True Random Number Generator Based on a Stochastic Delta–Sigma Modulator,” in IEEE Solid-State Circuits Letters, vol. 3, pp. 190-193, 2020, doi: 10.1109/LSSC.2020.3010901.
[5.4] B. Lin, B. Gao, Y. Pang, P. Yao, D. Wu, H. He, J. Tang, H. Qian, and H.Wu, “A High-Speed and High-Reliability TRNG Based on Analog RRAM for IoT Security Application,” IEEE International Electron Devices Meeting (IEDM), pp. 14.8.1-14.8.4, 2019, doi: 10.1109/IEDM19573.2019.8993486.
[5.5] Z. Wei, Y. Katoh, S.Ogasahara, Y. Yoshimoto, K. Kawai, Y. Ikeda, K. Eriguchi, K.Ohmori, S. Yoneda, "True Random Number Generator using Current Difference based on a Fractional Stochastic Model in 40-nm Embedded ReRAM," IEEE International Electron Devices Meeting (IEDM), pp. 4.8.1-14.8.4, 2016, doi: 10.1109/IEDM.2016.7838349.
[5.6] W. Y. Yang, B. Y. Chen, C. C. Chuang, E. R. Hsieh, K. S. Li and S. S. Chung, “Novel Concept of Hardware Security in Using Gate-switching FinFET Nonvolatile Memory to Implement True-Random-Number Generator,” 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 39.3.1-39.3.4, doi: 10.1109/IEDM13553.2020.9371993.
[5.7] K. Yang, Q. Dong, Z. Wang, Y. C. Chin, J. Chang, D. Blaauw, D. Svlvester, “A 28NM Integrated True Random Number Generator Harvesting Entropy from MRAM,” 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2018, pp. 171-172, doi: 10.1109/VLSIC.2018.8502431. |