博碩士論文 110521046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.221.101.3
姓名 張硯傑(Yan-Chieh Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有多層累增層的累增崩潰光電二極體在近蓋格模式操作下其增益和頻寬對光窗尺寸的相依性
(Window Size Dependence of Gain and Bandwidth in Avalanche Photodiodes with Multiple Multiplication Layers under Near Geiger-Mode Operation)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 至今為止,操作在接近蓋格模式(Geiger mode)下的累增崩潰光二極體(APD)在各種不同應用中檢測極弱光(單或多個光子)扮演重要的角色,例如:單光子探測器、飛時測距(ToF)、頻率調製連續波(FMCW)光達系統以及光時域反射儀(OTDR)。為了滿足這樣應用的需求,我們需要一種大主動窗口、適中頻寬以及高響應度的光二極體。由於本質上APD增益頻寬積(GBP)的限制,很難設計同時滿足上述這樣要求的APD。在本篇論文中,我們透過厚的吸收層(~2μm)和以In0.52Al0.48As為材料的三層累增層來克服APD中GBP的瓶頸。此外,我們的 APD 中從低到極高的操作增益具有不變 3 dB 頻寬,這樣的特徵隨著主動區光窗直徑的增加(40 至 200 µm)而變得更加明顯。這樣的特性對於LiDAR中用於偵測極弱光的接收器有很大的吸引力。而本篇的量測結果指出200 µm APD相對於40 µm APD表現出更高的0.9 Vbr 響應度(15 vs. 7 A/W)、更大的最大增益(460 vs. 110)以及更高的GBP(468 vs. 131 GHz),同時在大範圍的操作增益下(10 ~ 460)維持不變的3dB頻寬(1.4 GHz)。然而,為了獲得更大的3dB頻寬,我們把元件尺寸縮小,這會帶來其他的問題。當元件尺寸縮小,APD性能對光窗尺寸的依賴性提高,這可歸咎於蝕刻檯面邊緣表面態的影響。在本篇論文中,我們進一步展示了採用覆晶接合封裝的背照式結構,該結構最大限度地減少了小尺寸 APD 中的這種現象,從而確保了高速性能。與正照式參考樣品相比,覆晶接合封裝元件進一步顯示響應度(10.7 vs. 7 A/W)、3dB 頻寬(4.1 vs. 3.9 GHz)和飽和電流(4.25 vs. 3.6 mA)的增強。與具有相同主動區光窗尺寸(40 µm)的p-i-n 或正照式參考元件相比,我們覆晶式APD顯示出色的靜態和動態性能,從而帶來前所未有的高速靈敏度(5 µm/sec) 和卓越的4-D FMCW LiDAR影像品質。
摘要(英) So far, avalanche photodiodes(APD) operating at near Geiger-mode have played a vital role for detecting extremely weak light (single or a small number of photons) in variety of applications. For example, single-photon detectors(SPAD), time-of-flight(ToF) or frequency modulated continuous wave(FMCW) Lidar systems and optical time domain reflectormeters(OTDR). To satisfy the requirements of such applications, we need APDs with large window size, moderate bandwidth, high responsivity. However, it’s difficult to design APDs capable of meeting the afore-mentioned performance requirements due to the limitation of gain-bandwidth product(GBP). In this paper, we conquer the GBP bottleneck by using thick absorption layer(2μm) and triple In0.52Al0.48As based multiplication layer. Moreover, the characteristic invariant 3-dB bandwidth in our APDs, from low to an extremely high operation gain, becomes more pronounced with an increase of its active window diameter (40 to 200 μm). This characteristic makes it very attractive for the receiver detecting the extremely weak light in FMCW Lidar applications. Comparison shows that the 200 μm APD exhibits a higher 0.9 Vbr responsivity (15 vs. 7 A/W), larger maximum gain (460 vs. 110), and higher GBP (468 vs. 131 GHz) than does the 40 μm reference sample and can sustain a constant 3-dB bandwidth (1.4 GHz) over a wide range of operation gains (10 to 460). The dependence of the APD performance on the window size can be attributed to the influence of the surface states on the edge of the etched mesa. In this paper, we further demonstrate a backside-illuminated structure with a flip-chip bonding package which minimizes this phenomenon in small APDs ensuring high-speed performance. Compared with the top-illuminated reference samples, the flip-chip bonding packaged device shows a further enhancement of the responsivity (10.7 vs. 7 A/W), 3-dB bandwidth (4.1 vs. 3.9 GHz), and saturation current (4.25 vs. 3.6 mA). The excellent static and dynamic performance of our flip-chip APD in turn leads to an unprecedented high velocity sensitivity (5 μm/sec) and superior quality 4-D FMCW LiDAR images compared to that obtainable with p-i-n-based or top-illuminated reference devices with the same small active window size (40 μm).
關鍵字(中) ★ 調頻連續波光達
★ 累增崩潰光二極體
★ 背照式累增崩潰光二極體
關鍵字(英)
論文目次 目錄 vii
第一章 序論 1
1-1 光達系統的種類及應用 1
I. 飛時測距(ToF)之光達系統 1
II. 調頻連續波(Frequency Modulated Continuous Wave, FMCW)之光達系統 3
III. FMCW Lidar系統的應用 4
1-2 光達系統中接收器之介紹 6
I. 光達系統中接收器之需求 6
II. FMCW 光達系統中操作波長 9
III. Ge-on-Si v.s. Ⅲ/Ⅴ族APD 10
IV. FMCW Lidar 接收器之頻率組成以及頻寬重要性 12
V. FMCW Lidar接收器之工作區域 14
1-3 累增崩潰光二極體(APD) 17
I. InP based 累增崩潰光二極體(APD) 17
II. InAlAs based累增崩潰光二極體(APD) 19
III. 高靈敏度Ge-on-Si based APD 26
1-4 論文研究動機與架構 29
第二章 累增崩潰光二極體之設計與製作 31
2-1 累增崩潰光二極體之設計與模擬 31
2-2 累增崩潰光二極體之製作 37
第三章 累增崩潰光偵測器之量測及結果討論 57
3-1 APD性能對光窗尺寸的依賴性 57
3-2 頻率響應量測結果 65
3-3 RC&傳輸時間限制頻寬之等效模擬電路圖 68
3-4 增益頻寬積 (Gain-Bandwidth Product) 71
3-5 光達中APD性能的比較表 73
第四章 FMCW Lidar之量測結果與討論 74
4-1 背照式APD之介紹 74
4-2 自我注入4-D FMCW Lidar系統(Self-Injection 4-D FMCW LiDAR system) 77
4-3 背照式v.s.正照式APD之量測結果比較 79
第五章 結論與未來研究方向 83
5-1 結論 83
5-2 未來研究方向 83
參考文獻 [1] Santiago Royo, Maria Ballesta-Garcia “An Overview of Lidar Imaging Systems for Autonomous Vehicles” Appl. Sci. 2019, 9(19), 4093
[2] B. Behroozpour et al “Chip-Scale Electro-Optical 3D FMCW Lidar with 8μm Ranging Precision,” ISSCC Dig. Tech. Papers, San Francisco, CA, USA, pp. 214-215, Feb. 2016.
[3] https://www.novuslight.com/fmcw-the-future-of-lidar.html
[4] Novel designed Avalanche Photodiode with enhanced performance for application in 4-D/ 3-D FMCW LiDAR systems
[5] T. Baba et al., "Silicon Photonics FMCW LiDAR Chip With a Slow-Light Grating Beam Scanner," in IEEE Jour. of Selec. Top. in Quantum Electronics, vol. 28, no. 5, pp. 1-8, Sept.-Oct. 2022.
[6] https://www.silc.com/
[7] https://www.silc.com/product/
[8] M. Anagnosti, C. Caillaud, J.-F. Paret, F. Pommereau, G. Glastre, F. Blache, and M. Achouche, “Record Gain x Bandwidth (6.1 THz) Monolithically Integrated SOA-UTC Photoreceiver for 100-Gbit/s Applications,” J. Lightwave Technol. vol. 33, pp. 1186-1190, March, 2015.
[9] Shuang Gao, Maurice O’Sullivan, and Rongqing Hui, "Complex-optical-field lidar system for range and vector velocity measurement", Opt Express, Vol. 20, No. 23,25867-25875 (2012).
[10] S. O. Kasap,"Optoelectronics and photonics: principles and practices," Prentice Hall, 2001.
[11] F. Signorelli, F. Telesca, E. Conca, A. D. Frera, A. Ruggeri, A. Giudice, and A. Tosi, "Low-Noise InGaAs/InP Single-Photon Avalanche Diodes for Fiber-Based and Free-Space Applications," IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 2, pp. 3801310, April, 2022.
[12] https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/212/0210
[13] D. A. Ramirez, M. M. Hayat, G. Karve, J. C. Campbell, S. N. Torres, Bahaa E. A. Saleh, and M. C. Teich, " Detection Efficiencies and Generalized Breakdown Probabilities for Nanosecond-Gated Near Infrared Single-Photon Avalanche Photodiodes," IEEE J. Sel. Top. Quantum Electron., vol. 42, no. 2, pp. 137-145, Mar., 2006.
[14] M. A. Saleh, M. M. Hayat, P. P. Sotirelis, A. L. Holmes, J. C. Campbell, Bahaa E. A. Saleh and M. C. Teich, "Impact-Ionization and Noise Characteristics of Thin III-V Avalanche Photodiodes," IEEE Trans. Electron Devices, vol. 48, no.12, pp. 2722-2731, Dec., 2001.
[15] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InP/
[16] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InAlAs/
[17] S. Lee, M. Winslow, C. H. Grein, S. H. Kodati, A. H. Jones, D. R. Fink, P. Das, M. M. Hayat, T. J. Ronningen, J. C. Campbell, and S. Krishna, "Engineering of impact ionization characteristics in In0.53Ga0.47As/Al0.48In0.52As superlattice avalanche photodiodes on InP substrate," Sci. Rep., vol. 10, pp. 16735, Oct., 2020.
[18] J. Zhang, H. Wang, G. Zhang, K. H. Tan, S. Wicaksono, H. Xu, C. Wang, Y. Chen, Y. Liang, Charles C. W. Lim, S. F. Yoon, and X. Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Opt. Lett., vol. 46, no.11, pp. 2670-2673, June, 2021.
[19] Neil Na , Yen-Cheng Lu , Yu-Hsuan Liu , Po-Wei Chen , Ying-Chen Lai , You-Ru Lin , Chung-Chih Lin, Tim Shia , Chih-Hao Cheng & Shu-Lu Chen, "Room temperature operation of germanium– silicon single-photon avalanche diode," Nature 627, pages 295–300 (2024)
[20] C. I. Dai, "Single-Photon Avalanche Photodiode Fabricated with Standard CMOS Technology," Master thesis, National Chiao Tung University, Taiwan, July, 2010.
[21] http://www.film-top1.com/news-info.asp?id=279
[22] Z. Ahmad, S.-I Kuo, Y.-C. Chang, et al.,"Avalanche Photodiodes with Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications," IEEE J. Sel. Top. Quantum Electron., 28(2), 3800709, (2022), doi: 10.1109/JQE.2020.3043090
[23] Naseem et al., "Top-Illuminated Avalanche Photodiodes With Cascaded Multiplication Layers for High-Speed and Wide Dynamic Range Performance," in Journal of Lightwave Technology, vol. 40, no. 24, pp. 7893-7900, 15 Dec.15, 2022, doi:10.1109/JLT.2022.3204743
[24] Z. Ahmad, P.-S. Wang, Naseem, Y-C. Huang, et al., “Avalanche photodiodes with multiple multiplication layers for coherent detection,” Sci. Rep., 12, 16541, (2022)
[25] Naseem, Z. Ahmad, Y.-M. Liao, P.-S. Wang, et al., “Avalanche Photodiodes with Composite Charge-Layers for Low Dark Current, High-Speed, and High-Power Performance,” IEEE J. Sel. Top. Quantum Electron., 28(2), 3801910 (2022), doi: 10.1109/JSTQE.2021.3111895.
[26] M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Future Ethernet Systems," IEEE J. Sel. Top. Quantum Electron., 24(2), 3800811 (2018),
[27] G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 µm with a gain-bandwidth product of 320 GHz,” IEEE Photon. Tech. Lett., 13(8), 842–844, (2001)
[28] https://www.excelitas.com/product/c30662eh-1-ingaas-apd-200um-18
[29] https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/g14858-0020aa_kapd1068e.pdf
[30] S. Lee, X. Jin, H. Jung, H. Lewis, et al., “High gain, low noise 1550 nm GaAsSb/AlGaAsSb avalanche photodiodes,” Optica, 10(2), 147-154 (2023)
[31] M. Huang, S. Li, P. Cai, et al, “Germanium on Silicon Avalanche Photodiode,” IEEE J. Sel. Top. Quantum Electron., 24(2), 3800911, (2018)
[32] X. Li, N. Li, S. Demiguel, et al., "A comparison of front- and backside-illuminated high-saturation power partially depleted absorber photodetectors," IEEE J. Sel. Top. Quantum Electron., 40(9), 1321-1325, (2004),
[33] Shuang Gao, Maurice O’Sullivan, and Rongqing Hui, “Complex-optical-field lidar system for range and vector velocity measurement” Optics Express,Vol. 20,Issue 23,pp. 25867-25875(2012)
[34] Hegna, T.A.; Pettersson, H.; Teknova, K.G.; Laundal, K.M. “Inexpensive 3-D Laser Scanner System Based on a Galvanometer Scan Head” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 Commission V Symposium, Newcastle upon Tyne, UK. 2010
[35] https://www.thorlabs.de/thorproduct.cfm?partnumber=GVSM002/M
[36] Wang, F. -K. et al. Review of Self-Injection-Locked Radar Systems for Noncontact Detection of Vital Signs. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 4,294-307 (2020).
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明