參考文獻 |
[1] N. Islam, M. F. P. Mohamed, M. F. A. J. Khan, S. Falina, H. Kawarada, and M.
Syamsul, “Reliability, applications and challenges of GaN HEMT technology for
modern power devices: A review,’’ Crystals, vol. 12, no. 11, pp. 1581, Nov. 2022.
[2] Power GaN 2021: Epitaxy, Devices, Application and Technology Trends Report.
2021. Available online: http://www.yole.fr/GaN_Power_Epitaxy_Devices_
Applications_ Technology_Trends_2021.aspx
[3] X. H. Wen, H. A. Ming, J. G. Zhong, L. S. Bing, P. Tao, and L. Ming, “An overview
of the ultrawide bandgap Ga2O3 semiconductorbased Schottky barrier diode for power
electronics application,” Nanoscale Res. Lett., vol. 13, no.1, pp. 290, Sep. 2018.
[4] P. M. Asbeck, “Electronic properties of III-nitride materials and basics of III-nitride
FETs,” Semiconductors and Semimetals., vol. 102, pp. 1-40, Oct. 2019.
[5] https://ebrary.net/82450/computer_science/spontaneous_polarization
[6] H. X. Guang, D. G. Zhao, and D. S. Jiang, “Formation of two-dimensional electron
gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,”
Chin. Phys. B, vol. 24, no. 6, pp. 067301, Apr. 2015.
[7] G. Greco, F. Iucolano, and F. Roccaforte, “Review of technology for normally-off
HEMTs with p-GaN gate,” Mater. Sci. Semicond. Process., vol. 78, pp. 96–106, May.
2018.
[8] I. Hwang, H. Choi, J. W. Lee, H. S. Choi, J. Kim, J. Ha, C. Y. Um, S. K. Hwang, J.
Oh, J. Y. Kim, J. K. Shin, Y. Park, U. Chung, I. K. Yoo, and K. Kim, “1.6 kV, 2.9 mΩ
cm2 normally-off p-GaN HEMT device,” in Proc. 24th Int. Symp. Power Semicond.
Devices, pp. 41–44, Jun. 2012.
[9] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida,
“GaN power transistors on Si substrates for switching applications,” Proceedings of
the IEEE, vol. 98, no. 7, pp. 1151–1161, Jul. 2010.
[10] Q. Hu, S. Li, T. Li, X. Wang, X. Li, and Y. Wu, “Channel engineering of normally
OFF AlGaN/GaN MOS-HEMTs by atomic layer etching and high-k dielectric,” IEEE
Electron Device Lett., vol. 39, no. 9, pp. 1377–1380, Sep. 2018.
[11] H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K. M. Lau, “1300 V normally-off
p-GaN gate HEMTs on Si with high on-state drain current,” IEEE Trans. Electron
Devices, vol. 68, no. 2, pp. 653–657, Feb. 2021.
[12] W. Choi, O. Seok, H. Ryu, H.-Y. Cha, and K.-S. Seo, “High-voltage and low-leakage
current gate recessed normally-off GaN MIS-HEMTs with dual gate insulator
employing PEALD-SiNx/RF-sputtered-HfO2 ,” IEEE Electron Device Lett., vol. 35,
no. 2, pp. 175–177, Feb. 2014.
[13] M. Zhu, J. Ma, L. Nela, C. Erine, and E. Matioli, “High-voltage normally-off recessed
tri-gate GaN power MOSFETs with low onresistance,” IEEE Electron Device Lett.,
vol. 40, no. 8, pp. 1289–1292, Aug. 2019.
[14] J. J. Freedsman, T. Kubo, and T. Egawa, “High drain current density E-mode
Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit
(4 × 108 V2 Ω?1 cm?2),” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3079–3083,
Oct. 2013.
[15] S. Gao, X. Liu, J. Chen, Z. Xie, Q. Zhou, H. Wang, “High breakdown-voltage GaN
based HEMTs on silicon with Ti/Al/Ni/Ti ohmic contacts,” IEEE Electron Device
Letters, vol. 42, no. 4, pp.481-484, Apr. 2021.
[16] A. Fontsere, A. Perez-Tomas, V. Banu, P. Godignon, J. Millan, H. De Vleeschouwer,
J. M. Parsey, and P. Moens, “A HfO2 based 800 V/300 °C Au-free AlGaN/GaN-on-Si
HEMT technology,” in Proc. 24th ISPSD, pp. 37–40, Jun. 2012.
[17] C. H. Wu, J. Y. Chen, P. C. Han, M. W. Lee, K. S. Yang, H. C. Wang, P. C. Chang, Q.
H. Luc, Y. C. Lin, C. F. Dee, A. A. Hamzah, and E. Y. Chang, “Normally-off tri-gate
GaN MIS-HEMTs with 0.76 mΩ·cm2 specific on-resistance for power device
applications,” IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3441-3446, Aug.
2019.
[18] R. Hao, W. Li, K. Lai, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y.
Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, “Breakdown enhancement and current
collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN
HEMTs,” IEEE Electron Device Lett., vol. 38, no. 11, pp. 1567–1570, Nov. 2017.
[19] J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Effects of carbon on the electrical
and optical properties of InN, GaN, and AlN,” Phys. Rev. B, vol. 89, no. 3, pp.
035204-1–035204-8, Jan. 2014.
[20] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to suppress
vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,”
IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534–1536, Nov. 2011.
[21] L. Heuken, M. Kortemeyer, A. Ottaviani, M. Schroder, M. Alomari, D. Fahle, M.
Marx, M. Heuken, H. Kalisch, A. Vescan, J. N. Burghartz, “Analysis of an
AlGaN/AlN super-lattice buffer concept for 650-V low-dispersion and high-reliability
GaN HEMTs,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1113–1119, Mar.
2020.
[22] A. Tajalli, M. Meneghini, S. Besendorfer, R. Kabouche, I. Abid, R. Pusche, J.
Derluyn, S. Degroote, M. Germain, Elke Meissner, E. Zanoni, F. Medjdoub, and G.
Meneghesso, “High breakdown voltage and low buffer trapping in superlattice gan
on-silicon heterostructures for high voltage applications,” Materials, vol. 13, no.19,
pp. 4271, Sep. 2020.
[23] I. Abid, Y. Hamdaoui, J. Mehta, J. Derluyn, and F. Medjdoub, “Low buffer trapping
effects above 1200 V in normally off GaN-on-silicon field effect transistors,”
Micromachines, vol. 13, no. 9, pp. 1519, Sep. 2022.
[24] M. J. Uren, S. Karboyan, I. Chatterjee, A. Pooth, P. Moens, A. Banerjee, and M.
Kuball, “Leaky dielectric’ model for the suppression of dynamic RON in carbon
doped AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 64, no. 7, pp. 2826
2834, Jul. 2017
[25] M. Meneghini et al., “GaN-based power devices: Physics, reliability, and
perspectives,” J. Appl. Phys., vol. 130, no. 18, Art. no. 181101, Nov. 2021
[26] H. Tokuda, J. T. Asubar, and M. Kuzuhara, “Design considerations for normally-off
operation in Schottky gate p-GaN/AlGaN/GaN HEMTs,” Jpn. J. Appl. Phys., vol. 59,
no. 8, p. 084002, Jul. 2020
[27] B. Lu, E. L. Piner, and T. Palacios, “Temperature Dependent Vertical Conduction of
GaN HEMT Structures on Silicon and Bulk GaN Substratese,” in Proc. of Device
Research Conference (DRC), pp. 193–194, Jun. 2010.
[28] H. Umeda, A. Suzuki, Y. Anda, M. Ishida, T. Ueda, T. Tanaka, and D. Ueda,
“Blocking-voltage boosting technology for GaN transistors by widening depletion
layer in Si substrates,” in IEDM Tech. Dig., San Francisco, CA, pp. 480–483, Dec. 6
8, 2010.
[29] L. Heuken, M. Alshahed, A. Ottaviani, M. Alomari, M. Heuken, C. Wachter, T.
Bergunde, I. Cora, L. Toth, B. Pecz, and J. N. Burghartz, “Temperature dependent
vertical conduction of GaN HEMT structures on silicon and bulk GaN substrates,”
Phys. Status Solidi A, vol. 216, no. 1, Sep. 2019.
[30] M. A. Reshchikov, M. Vorobiov, O. Andrieiev, K. Ding, N. Izyumskaya, V. Avrutin, A.
Usikov, H. Helava and Y. Makarov, “Determination of the concentration of impurities
in GaN from photoluminescence and secondary-ion mass spectrometry,” Scientific
Reports , vol. 10, no. 1, p. 2223, 2020.
[31] S. Wu, X. Yang, Q. Zhang, Q. Shang, H. Huang, J. Shen, X. He, F. Xu, X. Wang, W.
Ge, and B. Shen, “Direct evidence of hydrogen interaction with carbon: C–H complex
in semi-insulating GaN,” Appl. Phys. Lett., vol. 116, no. 26, Art. no. 262101, Jun.
2020
[32] Y. Tokuda, Y. Matsuoka, H. Ueda, O. Ishiguro, N. Soejima, and T. Kachi, “DLTS
study of n-type GaN grown by MOCVD on GaN substrates,” Superlattices
Microstruct., vol. 40, nos. 4–6, pp. 268–273, Oct. 2006.
[33] U. Honda, Y. Yamada, Y. Tokuda, and K. Shiojima, “Deep levels in n-GaN doped with
carbon studied by deep level and minority carrier transient spectroscopies,” Jpn. J.
Appl. Phys., vol. 51, no. 4S, pp. 04DF04-1–04DF04-4, Apr. 2012.
[34] M. G. Ganchenkova and R. M. Nieminen, “Nitrogen vacancies as major point defects
in gallium nitride,” Phys. Rev. Lett., vol. 96, no. 19, p. 196402, May. 2006 |