參考文獻 |
[1] E. I. Vatajelu, G. Di Natale, M. Indaco and P. Prinetto, "STT MRAM-based PUFs," 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015, pp. 872-875, doi: 10.7873/DATE.2015.0505.,
[2] Feng Li, Xiaoyu Yang, A. T. Meeks, J. T. Shearer and K. Y. Le, "Evaluation of SiO/sub 2/ antifuse in a 3D-OTP memory," in IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, pp. 416-421, Sept. 2004, doi: 10.1109/TDMR.2004.837118.
[3] V. Parmar , Sandeep Kaur Kingra, Deepak Verma, Digamber Pandey, Giuseppe Piccolboni, Alessandro Bricalli, Amir Regev, Gabriel Pares, Laurent Grenouillet, Jean-Francois Nodin and Manan Suri, "Demonstration of SMT-reflow Immune and SCA-resilient PUF on 28nm RRAM device array," 2023 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2023, pp. 1-4, doi: 10.1109/IMW56887.2023.10145993.
[4] S. K. Mathew, S. K. Satpathy, M. A. Anders, Himanshu Kaul, S. K. Hsu, A. Agarwal, G. K. Chen, R. J. Parker, R. K. Krishnamurthy, Vivek De, "16.2 A 0.19pJ/b PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable secure key generation in 22nm CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014, pp. 278-279, doi: 10.1109/ISSCC.2014.6757433.
[5] Jiahao Song, Haoyang Luo, Xiyuan Tang, Kuan Xu, Zhigang Ji, Yuan Wang, Runsheng Wang, Ru Huang, "A 3T eDRAM In-Memory Physically Unclonable Function With Spatial Majority Voting Stabilization," in IEEE Solid-State Circuits Letters, vol. 5, pp. 58-61, 2022, doi: 10.1109/LSSC.2022.3158630.
[6] Rashid. Ali, You Wang, Haoyuan Ma, Zhengyi Hou, Deming Zhang, Erya Deng, and Weisheng Zhao, "A Reconfigurable Arbiter PUF Based on STT-MRAM," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401053.
[7] J. Das, K. Scott, S. Rajaram, D. Burgett and S. Bhanja, "MRAM PUF: A Novel Geometry Based Magnetic PUF With Integrated CMOS," in IEEE Transactions on Nanotechnology, vol. 14, no. 3, pp. 436-443, May 2015, doi: 10.1109/TNANO.2015.2397951.
[8] L. Cattaneo., M. Baldo, N. Lepri, F. Sancandi, M. Borghi, E. Petroni, A. Serafini, R. Annunziata, A. Redaelli and D. Ielmini, "Enhancing reliability of a strong physical unclonable function (PUF) solution based on virgin-state phase change memory (PCM)," 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2023, pp. 1-6, doi: 10.1109/IRPS48203.2023.10117586.
[9] L. Zhang, Z. H. Kong, C. -H. Chang, A. Cabrini and G. Torelli, "Exploiting Process Variations and Programming Sensitivity of Phase Change Memory for Reconfigurable Physical Unclonable Functions," in IEEE Transactions on Information Forensics and Security, vol. 9, no. 6, pp. 921-932, June 2014, doi: 10.1109/TIFS.2014.2315743.
[10] E. R. Hsieh, H. W. Wang, C. H. Liu, Steve S. Chung, T. P. Chen, S. A. Huang, T. J. Chen and Osbert Cheng, "Embedded PUF on 14nm HKMG FinFET Platform: A Novel 2-bit-per-cell OTP-based Memory Feasible for IoT Secuirty Solution in 5G Era," 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp. T118-T119, doi: 10.23919/VLSIT.2019.8776515.
[11] W. C. Wang, C. C. Chuang, C. W. Chang, E. R. Hsieh, H. W. Chen and S. S. Chung, "A Novel Complementary Architecture of One-time-programmable Memory and Its Applications as Physical Unclonable Function (PUF) and One-time Password," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 31.6.1-31.6.4, doi: 10.1109/IEDM13553.2020.9371898.
[12] S. Sadana, A. Lele, S. Tsundus, P. Kumbhare and U. Ganguly, "A Highly Reliable and Unbiased PUF Based on Differential OTP Memory," in IEEE Electron Device Letters, vol. 39, no. 8, pp. 1159-1162, Aug. 2018, doi: 10.1109/LED.2018.2844557.
[13] A. Lele, S. Sadana, A. Singh, H. S. Jatana and U. Ganguly, "A simple PECVD SiO2 OTP memory based PUF for 180nm node for IoT," 2017 75th Annual Device Research Conference (DRC), South Bend, IN, USA, 2017, pp. 1-2, doi: 10.1109/DRC.2017.7999433.
[14] B. Lin, B. Gao, Y. Pang, J. Tang, H. Qian and H. Wu, "A Unified Memory and Hardware Security Module Based on the Adjustable Switching Window of Resistive Memory," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 1257-1265, 2020, doi: 10.1109/JEDS.2020.3019266.
[15] B. Hajri, M. M. Mansour, A. Chehab and H. Aziza, "A Lightweight Reconfigurable RRAM-based PUF for Highly Secure Applications," 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Frascati, Italy, 2020, pp. 1-4, doi: 10.1109/DFT50435.2020.9250829.
[16] A. Chen, "Utilizing the Variability of Resistive Random Access Memory to Implement Reconfigurable Physical Unclonable Functions," in IEEE Electron Device Letters, vol. 36, no. 2, pp. 138-140, Feb. 2015, doi: 10.1109/LED.2014.2385870.
[17] H. Zhuang, X. Xi, N. Sun and M. Orshansky, "A Strong Subthreshold Current Array PUF Resilient to Machine Learning Attacks," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 1, pp. 135-144, Jan. 2020, doi: 10.1109/TCSI.2019.2945247.
[18] J. Liu, Y. Zhao, Y. Zhu, C. -H. Chan and R. P. Martins, "A Weak PUF-Assisted Strong PUF With Inherent Immunity to Modeling Attacks and Ultra-Low BER," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 12, pp. 4898-4907, Dec. 2022, doi: 10.1109/TCSI.2022.3206214.
[19] Y. He, D. Li, Z. Yu and K. Yang, "36.5 An Automatic Self-Checking and Healing Physically Unclonable Function (PUF) with <3×10-8 Bit Error Rate," 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2021, pp. 506-508, doi: 10.1109/ISSCC42613.2021.9365741.
[20] L. Santiago, Vinay C. Patil, Charles B. Prado, Tiago A. O. Alves, Leandro A. J. Marzulo, Felipe M. G. Franca, Sandip Kundu, "Realizing strong PUF from weak PUF via neural computing," 2017 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Cambridge, UK, 2017, pp. 1-6, doi: 10.1109/DFT.2017.8244433.
[21] P. Williams, H. Idriss and M. Bayoumi, "Mc-PUF: Memory-based and Machine Learning Resilient Strong PUF for Device Authentication in Internet of Things," 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 2021, pp. 61-65, doi: 10.1109/CSR51186.2021.9527930.
[22] H. Li, Y. Jin, K. Han and D. Yu, "A Lightweight XOR-PUF Structure for Resource Constrained Smart Device," 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2019, pp. 168-169, doi: 10.1109/GCCE46687.2019.9015230.
[23] Y. Pang, B. Gao, D. Wu, S. Yi, Q. Liu, W.H. Chen, T.W. Chang, W.E. Lin, X. Sun, S. Yu, H. Qian, M.F. Chang, H.Wu, et al., "25.2 A Reconfigurable RRAM Physically Unclonable Function Utilizing Post-Process Randomness Source With <6×10−6 Native Bit Error Rate," 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 402-404, doi: 10.1109/ISSCC.2019.8662307.
[24] B. Lin, Y. Pang, B.Gao, J. Tang, D. Wu, T. W. Chang, W. E. Lin, X.Sun, S. Yu, M. F. Chang, H. Qian, H.Wu, "A Highly Reliable RRAM Physically Unclonable Function Utilizing Post-Process Randomness Source," in IEEE Journal of Solid-State Circuits, vol. 56, no. 5, pp. 1641-1650, May 2021, doi: 10.1109/JSSC.2021.3050295.
[25] K.-H. Chuang, E. Bury, R. Degraeve, B. Kaczer, T. Kallstenius, G. Groeseneken, D. Linten, I. Verbauwhede, "A multi-bit/cell PUF using analog breakdown positions in CMOS," 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 2018, pp. P-CR.2-1-P-CR.2-5, doi: 10.1109/IRPS.2018.8353655.
[26] Y. Shifman, A. Miller, O. Keren, Y. Weizmann and J. Shor, "A Method to Improve Reliability in a 65-nm SRAM PUF Array," in IEEE Solid-State Circuits Letters, vol. 1, no. 6, pp. 138-141, June 2018, doi: 10.1109/LSSC.2018.2879216.
[27] B. Gao, B. Lin, X. Li, J. Tang, H. Qian and H. Wu, "A Unified PUF and TRNG Design Based on 40-nm RRAM With High Entropy and Robustness for IoT Security," in IEEE Transactions on Electron Devices, vol. 69, no. 2, pp. 536-542, Feb. 2022, doi: 10.1109/TED.2021.3138365.
[28] X. Xue, J. Yang, Y. Zhang, M. Wang, H. Lv, X. Zeng, M. Liu, "A 28nm 512Kb adjacent 2T2R RRAM PUF with interleaved cell mirroring and self-adaptive splitting for extremely low bit error rate of cryptographic key," 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), Macau, Macao, 2019, pp. 29-32, doi: 10.1109/A-SSCC47793.2019.9056893.
[29] M. -Y. Wu, T. H. Yang, L. C. Chen, C. C. Lin, H. C. Hu, F. Y. Su, C. M. Wang, J. P. H. Huang, H. M. Chen, C. C-H. Lu, E. C-S. Yang, R. S-J. Shen. "A PUF scheme using competing oxide rupture with bit error rate approaching zero," 2018 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018, pp. 130-132, doi: 10.1109/ISSCC.2018.8310218.
[30] R. Giterman, Y. Weizman and A. Teman, "Gain-Cell Embedded DRAM-Based Physical Unclonable Function," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4208-4218, Dec. 2018, doi: 10.1109/TCSI.2018.2838331.
[31] D. Y. Wang, Y. C. Hsin, K. Y. Lee, G. L. Chen, S. Y. Yang, H. H. Lee, Y. J. Chang, I. J. Wang, Y. C. Kuo, Y. S. Chen, P. H. Wang, C. I. Wu, D. D. Tang, "Hardware implementation of physically unclonable function (puf) in perpendicular STT MRAM," 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 2017, pp. 1-2, doi: 10.1109/VLSI-TSA.2017.7942497. |