博碩士論文 110521082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.143.232.24
姓名 黃育城(Yu-Cheng Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以OPAL-RT硬體迴圈實現基於深度強化學習演算法與負載預測模型之微電網經濟調度
(Implementation of Microgrid Economic Dispatch Based on Deep Reinforcement Learning Algorithms and Load Forecasting Model Using OPAL-RT Hardware in the Loop)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本論文對於微電網的能源管理最佳化進行了深入的分析和探討,介紹了微電網的結構和調度模型,並提出了一種結合深度確定性策略梯度(Deep Deterministic Policy Gradient, DDPG)與長短期記憶(Long Short-Term Memory, LSTM)負載預測模型的經濟調度方法,旨在實現微電網的最優調度控制。首先,利用LSTM網路來預測微電網的負載信息,以確定發電機輸出與儲能系統的充放電策略;其次,利用DDPG來實現微電網的最佳化經濟調度,為了驗證結果是否符合電力潮流限制,採用位於台灣澎湖群島的七美島微電網模型進行研究,並將所提出的方法與基於經驗的能量管理系統、牛頓結合粒子群體法和深度Q網路(Deep Q Network, DQN)進行比較;最後,通過使用OPAL-RT即時模擬器和浮點數位訊號處理器構建的硬體迴圈(Hardware In the Loop, HIL)系統,充分驗證和展現所提出方法的有效性。
摘要(英) This study presents an in-depth analysis and exploration of energy management optimization in microgrid. It introduces the structure and scheduling model of microgrid and proposes an economic dispatch method that combines Deep Deterministic Policy Gradient (DDPG) and Long Short-Term Memory (LSTM) load forecasting model to achieve optimal dispatch control in microgrid. Firstly, the LSTM network is utilized to predict the load information in microgrid, determining the output of power generator and the charging/discharging control strategy of a battery energy storage system. Secondly, DDPG is employed to optimize the economic dispatch of the microgrid. To verify the results against power flow constraints, a study is conducted using Cimei Island microgrid model located in the Penghu Islands, Taiwan. The proposed method is compared with experience-based energy management systems, Newton-particle swarm optimization, and Deep Q-Network (DQN). Finally, the effectiveness of the proposed method is fully validated and demonstrated through the Hardware In the Loop (HIL) system, which is built using OPAL-RT real-time simulator with floating-point digital signal processor.
關鍵字(中) ★ 經濟調度
★ 微電網
★ 負載預測
★ 長短期記憶
★ 深度強化學習
★ 確定性策略梯度
★ 能源管理系統
★ 牛頓粒子群優化
★ 深度Q網路
關鍵字(英) ★ Economic dispatch
★ microgrid
★ load forecasting
★ long short-term memory
★ deep reinforcement learning
★ deep deterministic policy gradient, energy management system
★ energy management system
★ Newton-particle swarm optimization
★ deep Q-network
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 本文貢獻 4
1.4 論文大綱 5
第二章 微電網架構與分散式電源控制 6
2.1 微電網簡介 6
2.1.1 IEEE 1547-2003規範 6
2.1.2 七美島微電網之研究架構 7
2.2 微電網控制策略 11
2.3 定功率控制 11
2.4 分級控制 12
2.5 三相座標軸轉換 13
2.5.1 靜止坐標軸 15
2.5.2 同步旋轉座標軸 17
2.6 變流器之實虛功控制與電流控制 18
2.7 分散式電源及控制介紹 19
2.7.1 柴油發電機及燃氣發電機 19
2.7.2 儲能系統 21
第三章 公共電業與輔助服務 24
3.1 時間電價 24
3.2 售購電運作方式 26
3.3 輔助服務介紹 27
3.3.1 調頻備轉服務 29
3.3.2 增強型動態調頻備轉 31
3.3.3 即時備轉 32
3.3.4 補充備轉 33
第四章 經濟調度模型及深度強化學習演算法 34
4.1 問題描述 34
4.2 演算法介紹 38
4.2.1 基於經驗的EMS[72] 38
4.2.2 Newton-PSO[72] 40
4.2.3 深度學習 41
4.2.3.1 前饋神經網路(Feedforward Neural Network) 41
4.2.3.2 卷積神經網路(Convolutional Neural Network, CNN) 42
4.2.3.3 遞迴神經網路 (Recurrent Neural Network, RNN) 43
4.2.3.4 LSTM 44
4.2.4 強化學習 47
4.2.4.1 Model-based與Model-free 47
4.2.4.2 On-policy與Off-policy 47
4.2.4.3 Value-based與Policy-based 48
4.2.5 深度強化學習 48
4.2.5.1 馬可夫決策過程(Markov Decision Process, MDP) 48
4.2.5.2 DQN 49
4.2.5.3 DDPG 52
第五章 模擬結果 55
5.1 情境一之模擬結果 55
5.2 情境二之模擬結果 60
5.3 情境三之模擬結果 65
第六章 硬體迴圈規劃與實驗結果 70
6.1 簡介 70
6.2 硬體迴圈規劃 71
6.2.1 即時模擬介紹 71
6.2.2 系統架構 73
6.2.3 系統硬體 74
6.2.3.1 OP4510 74
6.2.3.2 TMS320F28335 76
6.2.3.3 SN65HVD230 78
6.2.4 RT-LAB軟體 79
6.2.4.1 模型分割與命名 81
6.2.4.2 OpComm [79] 82
6.2.4.3 OpIPSocketCtrl [79] 82
6.2.4.4 OpAsyncRecv [79] 83
6.2.4.5 OpAsyncSend [79] 83
6.2.4.6 電路硬體處理器 83
6.2.5 通訊方式 84
6.2.5.1 Ethernet 84
6.2.5.2 CANbus 86
6.3 實驗結果 86
6.3.1 情境一之實驗結果 86
6.3.2 情境二之實驗結果 89
6.3.3 情境三之實驗結果 92
第七章 結論與未來展望 96
7.1 結論 96
7.2 未來展望 96
參考文獻 97
作者簡歷 107
參考文獻 [1]談光雄,「微電網之運轉與智慧型控制」,國防大學理工學院國防科學研究所,博士論文,民國102年。
[2]D. J. Cox and T. Davis, “Distributed generation and sensing for intelligent distributed microgrids,” in Proc. IEEE/SMC International Conf. System of Systems Engineering, Los Angeles, CA, pp. 5, 2006.
[3]X. Kong, X. Liu, L. Ma and K. Y. Lee, “Hierarchical Distributed Model Predictive Control of Standalone Wind/Solar/Battery Power System,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 8, pp. 1570-1581, Aug. 2019.
[4]洪穎怡,「微電網簡介」,台灣電力企業聯合會電子報第十二期,2019年8月。
[5]F. J. Lin, K. H. Tan, C. -F. Chang, M. Y. Li and T. Y. Tseng, “Development of Intelligent Controlled Microgrid for Power Sharing and Load Shedding,” IEEE Trans. Power Electron., vol. 37, no. 7, pp. 7928-7940, July 2022.
[6]L. N. Liu and G. H. Yang, “Distributed Optimal Economic Environmental Dispatch for Microgrids Over Time-Varying Directed Communication Graph,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1913-1924, 1 April-June 2021.
[7]Q. Lü, X. Liao, H. Li and T. Huang, “Achieving Acceleration for Distributed Economic Dispatch in Smart Grids Over Directed Networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1988-1999, 1 July-Sept. 2020.
[8]L. Bai, M. Ye, C. Sun and G. Hu, “Distributed Economic Dispatch Control via Saddle Point Dynamics and Consensus Algorithms,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 898-905, March 2019.
[9]C. A. Caldeira, A. D. D. de Almeida, H. R. Schlickmann, C. S. Gehrke, and F. Salvadori, “Impact analysis of the BESS insertion in electric grid using real-time simulation,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. - Latin America (ISGT Latin America), Gramado, Brazil, pp. 1-6, 2019.
[10]C. Dufour and J. Bélanger, “On the Use of Real-Time Simulation Technology in Smart Grid Research and Development,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 3963-3970, Nov./Dec. 2019.
[11]K. S. Amitkumar, P. Pillay, and J. Bélanger, “An Investigation of Power-Hardware-in-the-Loop-Based Electric Machine Emulation for Driving Inverter Open-Circuit Faults,” IEEE Trans. Transport. Electrific., vol. 7, no. 1, pp. 170-182, Mar. 2021.
[12]A. Bani-Ahmed, M. Rashidi, A. Nasiri and H. Hosseini, “Reliability Analysis of a Decentralized Microgrid Control Architecture,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3910-3918, July 2019.
[13]P. Yang, M. Yu, Q. Wu, N. Hatziargyriou, Y. Xia and W. Wei, “Decentralized Bidirectional Voltage Supporting Control for Multi-Mode Hybrid AC/DC Microgrid,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2615-2626, May 2020.
[14]C. Li, F. de Bosio, F. Chen, S. K. Chaudhary, J. C. Vasquez and J. M. Guerrero, “Economic Dispatch for Operating Cost Minimization Under Real-Time Pricing in Droop-Controlled DC Microgrid,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 1, pp. 587-595, March 2017.
[15]N. Anglani, G. Oriti and M. Colombini, “Optimized energy management system to reduce fuel consumption in remote military microgrids,” 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016.
[16]M. F. Zia, E. Elbouchikhi, M. Benbouzid and J. M. Guerrero, “Energy Management System for an Islanded Microgrid With Convex Relaxation,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7175-7185, Nov.-Dec. 2019.
[17]T. G. Paul, S. J. Hossain, S. Ghosh, P. Mandal and S. Kamalasadan, “A Quadratic Programming Based Optimal Power and Battery Dispatch for Grid-Connected Microgrid,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1793-1805, March-April 2018.
[18]Y. Liu, L. Wu and J. Li, “A Fast LP-Based Approach for Robust Dynamic Economic Dispatch Problem: A Feasible Region Projection Method,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 4116-4119, Sept. 2020.
[19]Y. Lei, F. Liu, A. Li, Y. Su, X. Yang and J. Zheng, “An Optimal Generation Scheduling Approach Based on Linear Relaxation and Mixed Integer Programming,” IEEE Access, vol. 8, pp. 168625-168630, 2020.
[20]C. Lin, W. Wu, X. Chen and W. Zheng, “Decentralized Dynamic Economic Dispatch for Integrated Transmission and Active Distribution Networks Using Multi-Parametric Programming,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4983-4993, Sept. 2018.
[21]F. Garcia-Torres, D. G. Vilaplana, C. Bordons, P. Roncero-Sánchez and M. A. Ridao, “Optimal Management of Microgrids With External Agents Including Battery/Fuel Cell Electric Vehicles,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4299-4308, July 2019.
[22]C. Liu, H. Ma, H. Zhang, X. Shi and F. Shi, “A MILP-Based Battery Degradation Model for Economic Scheduling of Power System,” IEEE Trans. Sustain. Energy, vol. 14, no. 2, pp. 1000-1009, April 2023.
[23]A. Kalakova, H. S. V. S. K. Nunna, P. K. Jamwal and S. Doolla, “A Novel Genetic Algorithm Based Dynamic Economic Dispatch With Short-Term Load Forecasting,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2972-2982, May-June 2021.
[24]M. Ellahi and G. Abbas, “A Hybrid Metaheuristic Approach for the Solution of Renewables-Incorporated Economic Dispatch Problems,” IEEE Access, vol. 8, pp. 127608-127621, 2020.
[25]C. Xiao, D. Sutanto, K. M. Muttaqi and M. Zhang, “A Judicious Decision-Making Approach for Power Dispatch in Smart Grid Using a Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1918-1929, March-April 2020.
[26]R. Ponciroli, N. E. Stauff, J. Ramsey, F. Ganda and R. B. Vilim, “An Improved Genetic Algorithm Approach to the Unit Commitment/Economic Dispatch Problem,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 4005-4013, Sept. 2020.
[27]G. Abbas, J. Gu, U. Farooq, A. Raza, M. U. Asad and M. E. El-Hawary, “Solution of an Economic Dispatch Problem Through Particle Swarm Optimization: A Detailed Survey – Part II,” IEEE Access, vol. 5, pp. 24426-24445, 2017.
[28]L. P. Raghav, R. S. Kumar, D. K. Raju and A. R. Singh, “Optimal Energy Management of Microgrids Using Quantum Teaching Learning Based Algorithm,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 4834-4842, Nov. 2021.
[29]A. A. Muzumdar, C. N. Modi, M. G. M and C. Vyjayanthi, “Designing a Robust and Accurate Model for Consumer-Centric Short-Term Load Forecasting in Microgrid Environment,” IEEE Syst. J., vol. 16, no. 2, pp. 2448-2459, June 2022.
[30]R. Trivedi, S. Patra and S. Khadem, “A Data-Driven Short-Term PV Generation and Load Forecasting Approach for Microgrid Applications,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 3, no. 4, pp. 911-919, Oct. 2022.
[31]S. A. Alavi, K. Mehran, V. Vahidinasab and J. P. S. Catalão, “Forecast-Based Consensus Control for DC Microgrids Using Distributed Long Short-Term Memory Deep Learning Models,” IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 3718-3730, Sept. 2021.
[32]H. Han et al., “Optimal Sizing Considering Power Uncertainty and Power Supply Reliability Based on LSTM and MOPSO for SWPBMs,” IEEE Syst. J., vol. 16, no. 3, pp. 4013-4023, Sept. 2022.
[33]J. Zhao, F. Li, S. Mukherjee and C. Sticht, “Deep Reinforcement Learning-Based Model-Free On-Line Dynamic Multi-Microgrid Formation to Enhance Resilience,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2557-2567, July 2022.
[34]H. Zhang, D. Yue, C. Dou and G. P. Hancke, “PBI Based Multi-Objective Optimization via Deep Reinforcement Elite Learning Strategy for Micro-Grid Dispatch With Frequency Dynamics,” IEEE Trans. Power Syst., vol. 38, no. 1, pp. 488-498, Jan. 2023.
[35]J. Sharma, P. -A. Andersen, O. -C. Granmo and M. Goodwin, “Deep Q-Learning With Q-Matrix Transfer Learning for Novel Fire Evacuation Environment,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 12, pp. 7363-7381, Dec. 2021.
[36]Z. Liu, L. Hou, K. Zheng, Q. Zhou and S. Mao, “A DQN-Based Consensus Mechanism for Blockchain in IoT Networks,” IEEE Internet Things J., vol. 9, no. 14, pp. 11962-11973, 15 July15, 2022.
[37]Y. -H. Xu, C. -C. Yang, M. Hua and W. Zhou, “Deep Deterministic Policy Gradient (DDPG)-Based Resource Allocation Scheme for NOMA Vehicular Communications,” IEEE Access, vol. 8, pp. 18797-18807, 2020.
[38]M. Zhang, Y. Zhang, Z. Gao and X. He, “An Improved DDPG and Its Application Based on the Double-Layer BP Neural Network,” IEEE Access, vol. 8, pp. 177734-177744, 2020.
[39]Y. Ye, D. Qiu, M. Sun, D. Papadaskalopoulos and G. Strbac, “Deep Reinforcement Learning for Strategic Bidding in Electricity Markets,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1343-1355, March 2020.
[40]L. Lin, X. Guan, Y. Peng, N. Wang, S. Maharjan and T. Ohtsuki, “Deep Reinforcement Learning for Economic Dispatch of Virtual Power Plant in Internet of Energy,” IEEE Internet Things J., vol. 7, no. 7, pp. 6288-6301, July 2020.
[41]D. Fang, X. Guan, B. Hu, Y. Peng, M. Chen and K. Hwang, “Deep Reinforcement Learning for Scenario-Based Robust Economic Dispatch Strategy in Internet of Energy,” IEEE Internet Things J., vol. 8, no. 12, pp. 9654-9663, 15 June15, 2021.
[42]X. Shan and F. Xue, “A Day-Ahead Economic Dispatch Scheme for Transmission System With High Penetration of Renewable Energy,” IEEE Access, vol. 10, pp. 11159-11172, 2022.
[43]F. -J. Lin, J. -C. Liao, C. -I. Chen, P. -R. Chen and Y. -M. Zhang, “Voltage Restoration Control for Microgrid With Recurrent Wavelet Petri Fuzzy Neural Network,” IEEE Access, vol. 10, pp. 12510-12529, 2022.
[44]X. Hou, K. Sun, N. Zhang, F. Teng, X. Zhang and T. C. Green, “Priority-Driven Self-Optimizing Power Control Scheme for Interlinking Converters of Hybrid AC/DC Microgrid Clusters in Decentralized Manner,” IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5970-5983, May 2022.
[45]IEEE Standard 1547-2003, “IEEE Standard for interconnecting distributed resources with electric power systems,” IEEE Standard, New York, USA, pp. 1-16, 2003
[46]澎湖縣政府澎湖縣七美鄉公所,七美島地理位置。檢自:
https://www.chimi.gov.tw/ch/home.jsp?id=10。
[47]林法正,陳彥豪,盧思穎,陳毓文,「澎湖群島智慧電網示範介紹」,國土及公共治理季刊第五卷第二期,2017年7月。
[48]NEP-Ⅱ第二期能源國家型科技計畫,智慧電網主軸中心107年度期末審查報告。
[49]蕭果登,「以OPAL-RT硬體迴圈實現微電網之智慧型控制」,國立中央大學,碩士論文,2020年6月。
[50]陳品蓉,「以OPAL-RT硬體迴圈實現微電網之電壓回復控制」,國立中央大學,碩士論文,2021年6月。
[51]R. A. Badwawi, W. R. Issa, T. K. Mallick, and M. Abusara, “Supervisory control for power management of an islanded AC microgrid using a frequency signalling-based fuzzy logic controller,” IEEE Trans. Sustainable Energy, vol. 10, no. 1, pp. 94-104, Jan. 2019.
[52]L. Meng et al., “Review on Control of DC Microgrids and Multiple Microgrid Clusters,” IEEE IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928-948, Sept. 2017.
[53]D. E. Olivares, A. M. Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. G. Bellmunt, M. Saeedifard, R. P. Behnke, G. A. J. Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[54]K. Yu, Q. Ai, S. Wang, J. Ni, and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, Mar. 2016.
[55]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[56]Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[57]黃仲欽,「交流電動機控制」,交流電動機課程講義,民國97年。
[58]新盛安動力科技,柴油發電機工作原理 柴油發電機操作規程。檢自:
https://kknews.cc/news/blmmoq9.html
[59]Hadi Saadat, Power system Analysis, PSA, 2010.
[60]MATLAB/Simulink wind turbine. 檢自:
https://www.mathworks.com/help/sps/ug/wind-turbine.html
[61]K. Tan, F. Lin, C. Shih and C. Kuo, “Intelligent Control of Microgrid With Virtual Inertia Using Recurrent Probabilistic Wavelet Fuzzy Neural Network,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7451-7464, July 2020.
[62]M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, Jun. 2014.
[63]陳彥豪、黃詩文、盧思穎,「儲能市場機會與台灣應用利基」,行政院原子能委員會核能研究所研究計畫,2015年9月。
[64]謝錦隆,薛康琳,鍾岳霖,戴志揚,「臺灣風力發電與液流電池系統儲電情境模擬」,臺灣能源期刊第三卷第一期第55-78頁,2016年3月。
[65]時段計算說明-台電簡易型時間電價試算評估。檢自:https://taipowerdsm.taipower.com.tw/power-period-description
[66]購入電力概況-發電資訊-資訊揭露-台灣電力股份有限公司。檢自:https://www.taipower.com.tw/tc/page.aspx?mid=207&cid=166&cchk=e3adb9f4-f40a-4971-ab11-e90a75e69863
[67]輔助服務商品介紹-電力交易平台。檢自:https://etp.taipower.com.tw/web/as_product_introduction
[68]日前輔助服務市場之參與作法-電力交易平台。檢自:https://etp.taipower.com.tw/web/download/5.%E6%97%A5%E5%89%8D%E8%BC%94%E5%8A%A9%E6%9C%8D%E5%8B%99%E5%B8%82%E5%A0%B4%E4%B9%8B%E5%8F%83%E8%88%87%E4%BD%9C%E6%B3%95.pdf
[69]F. J. Lin, J. C. Liao, C. I. Chen, P. R. Chen and Y. M. Zhang, "Voltage Restoration Control for Microgrid With Recurrent Wavelet Petri Fuzzy Neural Network," IEEE Access, vol. 10, pp. 12510-12529, 2022.
[70]蘇俊連,「離島再生能源併網之電池儲能系統規劃與經濟調度」,國立高海洋大學,碩士論文,2013年7月。
[71]W. T. Huang, K. C. Yao, and C. C. Wu, “Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid,” Energies, vol. 7, no. 12, pp. 8355–8373, Dec. 2014.
[72]F. J. Lin, C. F. Chang, Y. C. Huang, and T. M. Su, “A Deep Reinforcement Learning Method for Economic Power Dispatch of Microgrid in OPAL-RT Environment,” Technologies, vol. 11, no. 4, 96, July 2023.
[73]N. A. Khan, G. A. S. Sidhu and F. Gao, "Optimizing Combined Emission Economic Dispatch for Solar Integrated Power Systems," IEEE Access, vol. 4, pp. 3340-3348, 2016.
[74]A. S. Loyarte, L. A. Clementi and J. R. Vega, "A Hybrid Methodology for a Contingency Constrained Economic Dispatch under High Variability in the Renewable Generation," IEEE Lat. Am. Trans., vol. 17, no. 10, pp. 1715-1723, October 2019.
[75]J. Krohn, G. Beyleveld and A. Bassens, Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence, Addison Wesley, Sep. 2019.
[76]F. A. Gers, J. Schmidhuber and F. Cummins, “Learning to forget: continual prediction with LSTM,” in 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), Edinburgh, UK, 1999.
[77]L. Ibarra, A. Rosales, P. Ponce, A. Molina, and R. Ayyanar, “Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment,” Energies, vol. 10, no. 817, Jun. 2017.
[78]劉邦威,「應用即時模擬技術於交流微電網之建模與模擬」,國立中正大學,碩士論文,2012年7月。
[79]Opal-RT Technologies Inc., RT LAB Version 11.3, User’s Guide.
[80]OP4510使用教學,思渤科技,2019。
[81]TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007. 檢自:
https://www.ti.com/product/TMS320F28335
[82]SN65HVD23x 3.3-V CAN Bus Transceivers datasheet, Texas Instruments, Apr. 2018. 檢自:
https://www.ti.com/interface/can-lin-transceivers-sbcs/products.html
[83]L. Y. Lu, J. H. Liu, and C. C. Chu, “Distributed real-time simulation modeling and analysis of a micro-grid with renewable energy sources,” in IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1-6, 2012.
[84]C. Dufour, S. Cense, T. Ould-Bachir, L. Grégoire, and J. Bélanger, “General-purpose reconfigurable low-latency electric circuit and motor drive solver on FPGA,” in Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society, Montreal, QC, pp. 3073-3081, 2012.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2023-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明