參考文獻 |
[1]談光雄,「微電網之運轉與智慧型控制」,國防大學理工學院國防科學研究所,博士論文,民國102年。
[2]D. J. Cox and T. Davis, “Distributed generation and sensing for intelligent distributed microgrids,” in Proc. IEEE/SMC International Conf. System of Systems Engineering, Los Angeles, CA, pp. 5, 2006.
[3]X. Kong, X. Liu, L. Ma and K. Y. Lee, “Hierarchical Distributed Model Predictive Control of Standalone Wind/Solar/Battery Power System,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 8, pp. 1570-1581, Aug. 2019.
[4]洪穎怡,「微電網簡介」,台灣電力企業聯合會電子報第十二期,2019年8月。
[5]F. J. Lin, K. H. Tan, C. -F. Chang, M. Y. Li and T. Y. Tseng, “Development of Intelligent Controlled Microgrid for Power Sharing and Load Shedding,” IEEE Trans. Power Electron., vol. 37, no. 7, pp. 7928-7940, July 2022.
[6]L. N. Liu and G. H. Yang, “Distributed Optimal Economic Environmental Dispatch for Microgrids Over Time-Varying Directed Communication Graph,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1913-1924, 1 April-June 2021.
[7]Q. Lü, X. Liao, H. Li and T. Huang, “Achieving Acceleration for Distributed Economic Dispatch in Smart Grids Over Directed Networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1988-1999, 1 July-Sept. 2020.
[8]L. Bai, M. Ye, C. Sun and G. Hu, “Distributed Economic Dispatch Control via Saddle Point Dynamics and Consensus Algorithms,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 898-905, March 2019.
[9]C. A. Caldeira, A. D. D. de Almeida, H. R. Schlickmann, C. S. Gehrke, and F. Salvadori, “Impact analysis of the BESS insertion in electric grid using real-time simulation,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. - Latin America (ISGT Latin America), Gramado, Brazil, pp. 1-6, 2019.
[10]C. Dufour and J. Bélanger, “On the Use of Real-Time Simulation Technology in Smart Grid Research and Development,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 3963-3970, Nov./Dec. 2019.
[11]K. S. Amitkumar, P. Pillay, and J. Bélanger, “An Investigation of Power-Hardware-in-the-Loop-Based Electric Machine Emulation for Driving Inverter Open-Circuit Faults,” IEEE Trans. Transport. Electrific., vol. 7, no. 1, pp. 170-182, Mar. 2021.
[12]A. Bani-Ahmed, M. Rashidi, A. Nasiri and H. Hosseini, “Reliability Analysis of a Decentralized Microgrid Control Architecture,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3910-3918, July 2019.
[13]P. Yang, M. Yu, Q. Wu, N. Hatziargyriou, Y. Xia and W. Wei, “Decentralized Bidirectional Voltage Supporting Control for Multi-Mode Hybrid AC/DC Microgrid,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2615-2626, May 2020.
[14]C. Li, F. de Bosio, F. Chen, S. K. Chaudhary, J. C. Vasquez and J. M. Guerrero, “Economic Dispatch for Operating Cost Minimization Under Real-Time Pricing in Droop-Controlled DC Microgrid,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 1, pp. 587-595, March 2017.
[15]N. Anglani, G. Oriti and M. Colombini, “Optimized energy management system to reduce fuel consumption in remote military microgrids,” 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016.
[16]M. F. Zia, E. Elbouchikhi, M. Benbouzid and J. M. Guerrero, “Energy Management System for an Islanded Microgrid With Convex Relaxation,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7175-7185, Nov.-Dec. 2019.
[17]T. G. Paul, S. J. Hossain, S. Ghosh, P. Mandal and S. Kamalasadan, “A Quadratic Programming Based Optimal Power and Battery Dispatch for Grid-Connected Microgrid,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1793-1805, March-April 2018.
[18]Y. Liu, L. Wu and J. Li, “A Fast LP-Based Approach for Robust Dynamic Economic Dispatch Problem: A Feasible Region Projection Method,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 4116-4119, Sept. 2020.
[19]Y. Lei, F. Liu, A. Li, Y. Su, X. Yang and J. Zheng, “An Optimal Generation Scheduling Approach Based on Linear Relaxation and Mixed Integer Programming,” IEEE Access, vol. 8, pp. 168625-168630, 2020.
[20]C. Lin, W. Wu, X. Chen and W. Zheng, “Decentralized Dynamic Economic Dispatch for Integrated Transmission and Active Distribution Networks Using Multi-Parametric Programming,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4983-4993, Sept. 2018.
[21]F. Garcia-Torres, D. G. Vilaplana, C. Bordons, P. Roncero-Sánchez and M. A. Ridao, “Optimal Management of Microgrids With External Agents Including Battery/Fuel Cell Electric Vehicles,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4299-4308, July 2019.
[22]C. Liu, H. Ma, H. Zhang, X. Shi and F. Shi, “A MILP-Based Battery Degradation Model for Economic Scheduling of Power System,” IEEE Trans. Sustain. Energy, vol. 14, no. 2, pp. 1000-1009, April 2023.
[23]A. Kalakova, H. S. V. S. K. Nunna, P. K. Jamwal and S. Doolla, “A Novel Genetic Algorithm Based Dynamic Economic Dispatch With Short-Term Load Forecasting,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2972-2982, May-June 2021.
[24]M. Ellahi and G. Abbas, “A Hybrid Metaheuristic Approach for the Solution of Renewables-Incorporated Economic Dispatch Problems,” IEEE Access, vol. 8, pp. 127608-127621, 2020.
[25]C. Xiao, D. Sutanto, K. M. Muttaqi and M. Zhang, “A Judicious Decision-Making Approach for Power Dispatch in Smart Grid Using a Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1918-1929, March-April 2020.
[26]R. Ponciroli, N. E. Stauff, J. Ramsey, F. Ganda and R. B. Vilim, “An Improved Genetic Algorithm Approach to the Unit Commitment/Economic Dispatch Problem,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 4005-4013, Sept. 2020.
[27]G. Abbas, J. Gu, U. Farooq, A. Raza, M. U. Asad and M. E. El-Hawary, “Solution of an Economic Dispatch Problem Through Particle Swarm Optimization: A Detailed Survey – Part II,” IEEE Access, vol. 5, pp. 24426-24445, 2017.
[28]L. P. Raghav, R. S. Kumar, D. K. Raju and A. R. Singh, “Optimal Energy Management of Microgrids Using Quantum Teaching Learning Based Algorithm,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 4834-4842, Nov. 2021.
[29]A. A. Muzumdar, C. N. Modi, M. G. M and C. Vyjayanthi, “Designing a Robust and Accurate Model for Consumer-Centric Short-Term Load Forecasting in Microgrid Environment,” IEEE Syst. J., vol. 16, no. 2, pp. 2448-2459, June 2022.
[30]R. Trivedi, S. Patra and S. Khadem, “A Data-Driven Short-Term PV Generation and Load Forecasting Approach for Microgrid Applications,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 3, no. 4, pp. 911-919, Oct. 2022.
[31]S. A. Alavi, K. Mehran, V. Vahidinasab and J. P. S. Catalão, “Forecast-Based Consensus Control for DC Microgrids Using Distributed Long Short-Term Memory Deep Learning Models,” IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 3718-3730, Sept. 2021.
[32]H. Han et al., “Optimal Sizing Considering Power Uncertainty and Power Supply Reliability Based on LSTM and MOPSO for SWPBMs,” IEEE Syst. J., vol. 16, no. 3, pp. 4013-4023, Sept. 2022.
[33]J. Zhao, F. Li, S. Mukherjee and C. Sticht, “Deep Reinforcement Learning-Based Model-Free On-Line Dynamic Multi-Microgrid Formation to Enhance Resilience,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2557-2567, July 2022.
[34]H. Zhang, D. Yue, C. Dou and G. P. Hancke, “PBI Based Multi-Objective Optimization via Deep Reinforcement Elite Learning Strategy for Micro-Grid Dispatch With Frequency Dynamics,” IEEE Trans. Power Syst., vol. 38, no. 1, pp. 488-498, Jan. 2023.
[35]J. Sharma, P. -A. Andersen, O. -C. Granmo and M. Goodwin, “Deep Q-Learning With Q-Matrix Transfer Learning for Novel Fire Evacuation Environment,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 12, pp. 7363-7381, Dec. 2021.
[36]Z. Liu, L. Hou, K. Zheng, Q. Zhou and S. Mao, “A DQN-Based Consensus Mechanism for Blockchain in IoT Networks,” IEEE Internet Things J., vol. 9, no. 14, pp. 11962-11973, 15 July15, 2022.
[37]Y. -H. Xu, C. -C. Yang, M. Hua and W. Zhou, “Deep Deterministic Policy Gradient (DDPG)-Based Resource Allocation Scheme for NOMA Vehicular Communications,” IEEE Access, vol. 8, pp. 18797-18807, 2020.
[38]M. Zhang, Y. Zhang, Z. Gao and X. He, “An Improved DDPG and Its Application Based on the Double-Layer BP Neural Network,” IEEE Access, vol. 8, pp. 177734-177744, 2020.
[39]Y. Ye, D. Qiu, M. Sun, D. Papadaskalopoulos and G. Strbac, “Deep Reinforcement Learning for Strategic Bidding in Electricity Markets,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1343-1355, March 2020.
[40]L. Lin, X. Guan, Y. Peng, N. Wang, S. Maharjan and T. Ohtsuki, “Deep Reinforcement Learning for Economic Dispatch of Virtual Power Plant in Internet of Energy,” IEEE Internet Things J., vol. 7, no. 7, pp. 6288-6301, July 2020.
[41]D. Fang, X. Guan, B. Hu, Y. Peng, M. Chen and K. Hwang, “Deep Reinforcement Learning for Scenario-Based Robust Economic Dispatch Strategy in Internet of Energy,” IEEE Internet Things J., vol. 8, no. 12, pp. 9654-9663, 15 June15, 2021.
[42]X. Shan and F. Xue, “A Day-Ahead Economic Dispatch Scheme for Transmission System With High Penetration of Renewable Energy,” IEEE Access, vol. 10, pp. 11159-11172, 2022.
[43]F. -J. Lin, J. -C. Liao, C. -I. Chen, P. -R. Chen and Y. -M. Zhang, “Voltage Restoration Control for Microgrid With Recurrent Wavelet Petri Fuzzy Neural Network,” IEEE Access, vol. 10, pp. 12510-12529, 2022.
[44]X. Hou, K. Sun, N. Zhang, F. Teng, X. Zhang and T. C. Green, “Priority-Driven Self-Optimizing Power Control Scheme for Interlinking Converters of Hybrid AC/DC Microgrid Clusters in Decentralized Manner,” IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5970-5983, May 2022.
[45]IEEE Standard 1547-2003, “IEEE Standard for interconnecting distributed resources with electric power systems,” IEEE Standard, New York, USA, pp. 1-16, 2003
[46]澎湖縣政府澎湖縣七美鄉公所,七美島地理位置。檢自:
https://www.chimi.gov.tw/ch/home.jsp?id=10。
[47]林法正,陳彥豪,盧思穎,陳毓文,「澎湖群島智慧電網示範介紹」,國土及公共治理季刊第五卷第二期,2017年7月。
[48]NEP-Ⅱ第二期能源國家型科技計畫,智慧電網主軸中心107年度期末審查報告。
[49]蕭果登,「以OPAL-RT硬體迴圈實現微電網之智慧型控制」,國立中央大學,碩士論文,2020年6月。
[50]陳品蓉,「以OPAL-RT硬體迴圈實現微電網之電壓回復控制」,國立中央大學,碩士論文,2021年6月。
[51]R. A. Badwawi, W. R. Issa, T. K. Mallick, and M. Abusara, “Supervisory control for power management of an islanded AC microgrid using a frequency signalling-based fuzzy logic controller,” IEEE Trans. Sustainable Energy, vol. 10, no. 1, pp. 94-104, Jan. 2019.
[52]L. Meng et al., “Review on Control of DC Microgrids and Multiple Microgrid Clusters,” IEEE IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928-948, Sept. 2017.
[53]D. E. Olivares, A. M. Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. G. Bellmunt, M. Saeedifard, R. P. Behnke, G. A. J. Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[54]K. Yu, Q. Ai, S. Wang, J. Ni, and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, Mar. 2016.
[55]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[56]Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[57]黃仲欽,「交流電動機控制」,交流電動機課程講義,民國97年。
[58]新盛安動力科技,柴油發電機工作原理 柴油發電機操作規程。檢自:
https://kknews.cc/news/blmmoq9.html
[59]Hadi Saadat, Power system Analysis, PSA, 2010.
[60]MATLAB/Simulink wind turbine. 檢自:
https://www.mathworks.com/help/sps/ug/wind-turbine.html
[61]K. Tan, F. Lin, C. Shih and C. Kuo, “Intelligent Control of Microgrid With Virtual Inertia Using Recurrent Probabilistic Wavelet Fuzzy Neural Network,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7451-7464, July 2020.
[62]M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, Jun. 2014.
[63]陳彥豪、黃詩文、盧思穎,「儲能市場機會與台灣應用利基」,行政院原子能委員會核能研究所研究計畫,2015年9月。
[64]謝錦隆,薛康琳,鍾岳霖,戴志揚,「臺灣風力發電與液流電池系統儲電情境模擬」,臺灣能源期刊第三卷第一期第55-78頁,2016年3月。
[65]時段計算說明-台電簡易型時間電價試算評估。檢自:https://taipowerdsm.taipower.com.tw/power-period-description
[66]購入電力概況-發電資訊-資訊揭露-台灣電力股份有限公司。檢自:https://www.taipower.com.tw/tc/page.aspx?mid=207&cid=166&cchk=e3adb9f4-f40a-4971-ab11-e90a75e69863
[67]輔助服務商品介紹-電力交易平台。檢自:https://etp.taipower.com.tw/web/as_product_introduction
[68]日前輔助服務市場之參與作法-電力交易平台。檢自:https://etp.taipower.com.tw/web/download/5.%E6%97%A5%E5%89%8D%E8%BC%94%E5%8A%A9%E6%9C%8D%E5%8B%99%E5%B8%82%E5%A0%B4%E4%B9%8B%E5%8F%83%E8%88%87%E4%BD%9C%E6%B3%95.pdf
[69]F. J. Lin, J. C. Liao, C. I. Chen, P. R. Chen and Y. M. Zhang, "Voltage Restoration Control for Microgrid With Recurrent Wavelet Petri Fuzzy Neural Network," IEEE Access, vol. 10, pp. 12510-12529, 2022.
[70]蘇俊連,「離島再生能源併網之電池儲能系統規劃與經濟調度」,國立高海洋大學,碩士論文,2013年7月。
[71]W. T. Huang, K. C. Yao, and C. C. Wu, “Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid,” Energies, vol. 7, no. 12, pp. 8355–8373, Dec. 2014.
[72]F. J. Lin, C. F. Chang, Y. C. Huang, and T. M. Su, “A Deep Reinforcement Learning Method for Economic Power Dispatch of Microgrid in OPAL-RT Environment,” Technologies, vol. 11, no. 4, 96, July 2023.
[73]N. A. Khan, G. A. S. Sidhu and F. Gao, "Optimizing Combined Emission Economic Dispatch for Solar Integrated Power Systems," IEEE Access, vol. 4, pp. 3340-3348, 2016.
[74]A. S. Loyarte, L. A. Clementi and J. R. Vega, "A Hybrid Methodology for a Contingency Constrained Economic Dispatch under High Variability in the Renewable Generation," IEEE Lat. Am. Trans., vol. 17, no. 10, pp. 1715-1723, October 2019.
[75]J. Krohn, G. Beyleveld and A. Bassens, Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence, Addison Wesley, Sep. 2019.
[76]F. A. Gers, J. Schmidhuber and F. Cummins, “Learning to forget: continual prediction with LSTM,” in 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), Edinburgh, UK, 1999.
[77]L. Ibarra, A. Rosales, P. Ponce, A. Molina, and R. Ayyanar, “Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment,” Energies, vol. 10, no. 817, Jun. 2017.
[78]劉邦威,「應用即時模擬技術於交流微電網之建模與模擬」,國立中正大學,碩士論文,2012年7月。
[79]Opal-RT Technologies Inc., RT LAB Version 11.3, User’s Guide.
[80]OP4510使用教學,思渤科技,2019。
[81]TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007. 檢自:
https://www.ti.com/product/TMS320F28335
[82]SN65HVD23x 3.3-V CAN Bus Transceivers datasheet, Texas Instruments, Apr. 2018. 檢自:
https://www.ti.com/interface/can-lin-transceivers-sbcs/products.html
[83]L. Y. Lu, J. H. Liu, and C. C. Chu, “Distributed real-time simulation modeling and analysis of a micro-grid with renewable energy sources,” in IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1-6, 2012.
[84]C. Dufour, S. Cense, T. Ould-Bachir, L. Grégoire, and J. Bélanger, “General-purpose reconfigurable low-latency electric circuit and motor drive solver on FPGA,” in Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society, Montreal, QC, pp. 3073-3081, 2012. |