博碩士論文 110521087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.144.84.61
姓名 林孜彌(Tzu-Mi Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 標籤強化超圖注意力網路模型於精神疾病文本多標籤分類
(Label-Enhanced Hypergraph Attention Networks for Multi-label Classification of Psychiatric Texts)
相關論文
★ 多重嵌入增強式門控圖序列神經網路之中文健康照護命名實體辨識★ 基於腦電圖小波分析之中風病人癲癇偵測研究
★ 基於條件式生成對抗網路之資料擴增於思覺失調症自動判別★ 標籤圖卷積增強式超圖注意力網路之中文健康照護文本多重分類
★ 運用合成器混合注意力改善BERT模型於科學語言編輯★ 強化領域知識語言模型於中文醫療問題意圖分類
★ 管道式語言轉譯器 之中文健康照護開放資訊擷取★ 運用句嵌入向量重排序器 增進中文醫療問答系統效能
★ 利用雙重註釋編碼器於中文健康照護實體連結★ 聯合詞性與局部語境於中文健康照護實體關係擷取
★ 運用異質圖注意力網路於中文醫療答案擷取式摘要★ 學習使用者意圖於中文醫療問題生成式摘要
★ 上下文嵌入增強異質圖注意力網路模型 於心理諮詢文本多標籤分類★ 基於階層式聚類注意力之編碼解碼器於醫療問題多答案摘要
★ 探索門控圖神經網路於心理諮詢文字情感強度預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-17以後開放)
摘要(中) 精神疾病是源自於大腦生病導致的情緒、知覺、思考、認知及行為上的異常,本論 文的研究主題是精神疾病文本的多標籤分類,專注於開發深度學習模型,用於自動理解 文本語意內涵,預測一個至多個事先定義好的標籤。我們提出標籤強化超圖注意力網路(Label-Enhanced Hypergraph Attention Networks, LE-HyperGAT) 模型,藉由超圖構對 文本進行建模抽取特徵,並使用超圖注意力網路來捕捉文本之間的語意關係,最後利用 標籤的嵌入向量,強化標籤與文本間的關係,達到更好的文本標籤類別預測成效。實驗 資料來自心靈園地網站 (http://www.psychpark.org),民眾可以在這個平台上提出各式各 樣與心理情緒、精神疾病相關的問題,專業的精神科醫師會根據問題提供回覆,以及針 對問題意涵的種類給予適當的多個標籤。我們蒐集的資料集(簡稱 PsychPark) 包括 2,752 篇民眾的留言,每篇留言的平均字數為 264.96 字以及平均有 1.58 個標籤。實驗結果顯 示我們提出的 LE-HyperGAT 模型有最高的 Macro-averaging F1 分數 0.3713,比相關研究模型(包含 CNN, BiLSTM, LSAN, BERT, GraphCNN, TextGCN 以及HyperGAT)表現 更好。之外,錯誤分析實驗可以進一步發現 LE-HyperGAT 可以解決低頻標籤的問題,有效提升多標籤文本分類的效能。
摘要(英) Mental illness stems from brain maladies leading to abnormalities in emotions, perceptions, thoughts, cognition, and behavior. This paper focuses on the multi-label classification of psychiatric texts, emphasizing the development of deep learning models for automatically understanding textual semantics and predicting one or multiple predefined labels. We propose the Label-Enhanced Hypergraph Attention Networks (LE-HyperGAT) method, which models texts by extracting features using hypergraph structures and captures semantic features using hypergraph attention networks. Finally, we reinforce the relationship between labels and text by utilizing label embedding vectors to achieve improved category predictions. Experimental data is sourced from the PsychPark website (http://www.psychpark.org), where individuals can pose various questions related to mental and emotional health issues. Professional psychiatrists respond and annotate appropriate multiple labels based on the nature of the questions. Our dataset (PsychPark) comprises 2,752 posts, with an average of 264.96 words and 1.58 labels. Experimental results demonstrate that our proposed LE-HyperGAT model achieves the highest Macro-averaging F1 score of 0.3713, outperforming related research models (including CNN, BiLSTM, LSAN, BERT, GraphCNN, TextGCN, and HyperGAT). Additionally, error analysis further reveals that LE-HyperGAT addresses low-frequency label issues, effectively enhancing the performance of multi-label text classification.
關鍵字(中) ★ 多標籤分類
★ 超圖結構
★ 注意力機制
★ 圖神經網路
★ 精神疾病文本應用
關鍵字(英) ★ multi-label classification
★ hypergraph structure
★ attention mechanism
★ graph neural networks
★ applications of psychiatric texts
論文目次 Chapter 1. Introduction ..........................................................................................1
1-1. Motivations .................................................................................................... 1
1-2. Objectives ......................................................................................................3
1-3. Organization ..................................................................................................4
Chapter 2. Related work .......................................................................................5
2-1. Multi-Label Text Classification.......................................................................5
2-2. Layered Neural Networks..............................................................................7
2-3. Graph Neural Networks.................................................................................10
2-4. Applications of Psychiatric Texts .................................................................14
Chapter 3. Proposed Model ................................................................................16
3-1. Hypergraph Construction .............................................................................18
3-2. Hypergraph Attention Networks...................................................................23
3-3. Label Semantics Enhanced Prediction .........................................................25
Chapter 4. Experiments .......................................................................................27
4-1.Datasets.........................................................................................................27
4-2. Settings ..................................................................................................... 29
4-3. Metrics ........................................................................................................ 30
4-4. Results ........................................................................................................ 33
4-5. In-depth Analysis ........................................................................................ 35
4-6. Case Study .................................................................................................. 38
4-7. Error Analysis .............................................................................................. 39
Chapter 5. Conclusions .......................................................................................40
參考文獻 David Adam. 2013. Mental health: On the spectrum. Nature, vol. 496, pages 416–418. Ya-Mei Bai, Chao-Cheng Lin, Jen-Yeu Chen and Win-Chien. Liu. 2001. Virtual Psychiatric Clinics. The American Journal of Psychiatry, vol. 158, no. 7, pages1160-1161.
David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. Journal of machine Learning research, vol. 3, pages 993-1022.
Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov. 2017. Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, vol. 5, pages 135–146.
Matthew R. Boutell, Jiebo Luo, Xipeng Shen, Christopher M. Brown. 2004. Learning multi- label scene classification. Pattern Recognition, vol. 37, no. 9, pages 1757-1771.
Boli Chen, Xin Huang, Lin Xiao, and Liping Jing. 2020. Hyperbolic Capsule Networks for Multi-Label Classification. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3115–3124.
Prateek Chhikara, Ujjwal Pasupulety, John Marshall, Dhiraj Chaurasia, and Shweta Kumari. 2023.Privacy Aware Question-Answering System for Online Mental Health Risk Assessment. In The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, pages 215–222.
Yong Dai, Linjun Shou, Ming Gong, Xiaolin Xia, Zhao Kang, Zenglin Xu, and Daxin Jiang. 2022. Knowledge-Based Systems, vol. 236, 107659.
Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, vol. 29, pages 3844-3852.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre- training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4171–4186.
Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li, and Huan Liu. 2020. Be More with Less: Hypergraph Attention Networks for Inductive Text Classification. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4927– 4936.
Cunxiao Du, ZhaoZheng Chen, Fuli Feng, Lei Zhu, Tina Gan, and Liqiang Nie. 2019. Explicit interaction model towards text classification. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6359–6366.
Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pages 1746– 1751.
David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. Rcv1: A new benchmark collection for text categorization research. Journal of machine learning research, vol. 5, pages 361–397.
Chao-Cheng Lin, Ya-Mei Bai, Jen-Yeu Chen. 2003. Reliability of information provided by patients of a virtual psychiatric clinic. Psychiatric Services, vol. 54, no. 8, pages 1167-1168.
Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. 2019. Heterogeneous graph attention networks for semi-supervised short text classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, pages 4821-4830.
Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and Xiaoyue Feng. 2021.Deep Attention Diffusion Graph Neural Networks for Text Classification. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 8142–8152.
Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv. 2020. Tensor graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 5, pages 8409-8416.
Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text classification with multi-task learning. 2016. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages 2873–2879.
Eneldo Loza Mencia and Johannes Fu ̈rnkranz. 2008. Efficient pairwise multilabel classification for large- scale problems in the legal domain. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 50–65.
Qianwen Ma, Chunyuan Yuan, Wei Zhou, and Songlin Hu. 2021. Label-Specific Dual Graph Neural Network for Multi-Label Text Classification. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, pages 3855–3864.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. arXiv preprint, arXiv:1301.3781.
James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. 2018. Explainable Prediction of Medical Codes from Clinical Text. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1101–1111.
Jesse Read, Bernhard Pfahringer, Geoff Holmess, and Eibe Frank. 2009. Classifier chains for multi-label classification. Machine learning and Knowledge Discovery in Databases, vol. 5782, pages 254-269.
Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pages 1532–1543.
Ashish Sharma, Adam Miner, David Atkins, and Tim Althoff. 2020. A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5263–5276.
Vanessa Borda de Souza, Jeferson Campos Nobre, and Karin Becker. 2022. DAC Stacking: A Deep Learning Ensemble to Classify Anxiety, Depression, and Their Comorbidity From Reddit Texts. IEEE J Biomed Health Information, vol. 26, no. 7, pages 3303-3311.
Grigorios Tsoumakas, Ioannis Katakis, and Loannis Vlahavas. 2010. Mining Multi-label Data. Data mining and knowledge discovery handbook, 2nd ed, pages 667-685.
Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo Henao, and Lawrence Carin. 2018. Joint Embedding of Words and Labels for Text Classification. InProceedings of the 56th Annual Meeting of the Association for Computational Linguistic, pages 2321–2331.
Han Wang, Canwen Xu, and Jilian McAuley. 2022. Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5483 – 5492.
Jheng-Long Wu, Liang-Chih Yu and Pei-Chann Chang. 2012. Detecting causality from online psychiatric texts using inter-sentential language patterns. BMC Medical Informatics and Decision Making, vol. 12: article 72.
Lin Xiao, Xin Huang, Boli Chen, and Liping Jing. 2019.Label-Specific Document Representation for Multi-Label Text Classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, pages 466–475.
Pengcheng Yang, Fuli Luo, Shuming Ma, Junyang Lin, and Xu Sun. 2019. A Deep Reinforced Sequence-to-Set Model for Multi-Label Classification. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5252–5258.
Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei Wu, and Houfeng Wang. 2018. SGM: Sequence Generation Model for Multi-label Classification. In Proceedings of the 27th International Conference on Computational Linguistics, pages 3915–3926.
Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical Attention Networks for Document Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1480–1489.
Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional networks for text classification. In Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 1, pages 7370-7377.
Andrew Yates, Arman Cohan, and Nazli Goharian. 2017. Depression and Self-Harm Risk Assessment in Online Forums. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2968–2978.
Liang-Chih Yu, and Chun-Yuan Ho. 2014. Identifying Emotion Labels from Psychiatric Social Texts Using Independent Component Analysis. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 837–847.
Wenjie Zhang, Junchi Yan, Xiangfeng Wang, and Hongyuan Zha. 2018. Deep extreme multi- label learning. In Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, pages100–107.
Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen, and Liang Wang. 2020. Every Document Owns Its Structure: Inductive Text Classification via Graph Neural Networks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 334–339.
Ximing Zhang, Qian-Wen Zhang, Zhao Yan, Ruifang Liu, and Yunbo Cao. 2021. Enhancing Label Correlation Feedback in Multi-Label Text Classification via Multi-Task Learning. In Findings of the Association for Computational Linguistics: ACL-IJCNLP, pages 1190–1200.
Chong Zhang, He Zhu, Xingyu Peng, Junran Wu, and Ke Xu. 2022. Hierarchical Information Matters: Text Classification via Tree Based Graph Neural Network. In Proceedings of the 29th International Conference on Computational Linguistics, pages 950–959.
指導教授 李龍豪(Lung-Hao Lee) 審核日期 2024-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明