參考文獻 |
[1] 曲建仲,第五代行動通訊(5G)的原理與應用,台灣扶輪,民國110年5月
[2] W. -C. Lai, “Design of 1V CMOS 5.8 GHz VCO with Switched Capacitor Array Tuning for Intelligent Sensor Fusion,” Int’l Conf. on Advanced Robotics and Intelligent Syst. (ARIS), Taipei, Taiwan, 2020, pp. 1-4.
[3] H. Sjoland, “Improved switched tuning of differential CMOS VCOs,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 5, pp. 352-355, May 2002.
[4] A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integr. Circuits Conf., May 1998, pp. 555-558.
[5] A. Mazzanti and P. Andreani, “Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
[6] Z. Xing, H. Liu, Y. Wu, C. Zhao, Y. Yu and K. Kang, “A 3-GHz Inverse-Coupled Current-Reuse VCO Implemented by 1:1 Transformer,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 434-436, May 2022.
[7] P. -Y. Wang, G. -Y. Su, Y. -C. Chang, D. -C. Chang and S. S. H. Hsu, “A Transformer-Based Current-Reuse QVCO With an FoM Up to −200.5 dBc/Hz,” IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 65, no. 6, pp. 749-753, June 2018.
[8] M. Shahmohammadi, M. Babaie and R. B. Staszewski, “A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, Nov. 2016.
[9] M. Babaie and R. B. Staszewski, “A Class-F CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120-3133, Dec. 2013.
[10] X. Liu, J. Jin, C. Yang, Y. Liu and J. Zhou, “A 12-GHz Transformer Feedback Class-F₂,₃ Voltage-Controlled Oscillator Using Noise Circulating With FoM of 190.5 dBc/Hz,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 11, pp. 1231-1234, Nov. 2021.
[11] T. Wang, W. Li, H. Zhou, J. Ye and Y. Xu, “An 8-12GHz Class-F3 VCO with Multi-LC Tank in 28nm CMOS,” in Proc. IEEE 13th Int. Conf. ASIC, Chongqing, China, 2019, pp. 1-4.
[12] F. Wang and H. Wang, “A Noise Circulating Oscillator,” IEEE J. Solid-State Circuits, vol. 54, no. 3, pp. 696-708, March 2019.
[13] C. Wan, T. Xu, X. Yi and Q. Xue, “A VCO With Extra Cross-Coupling Path,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 10, pp. 1130-1133, Oct. 2021.
[14] P. Mirajkar, J. Chand, S. Aniruddhan and S. Theertham, “Low Phase Noise Ku-Band VCO With Optimal Switched-Capacitor Bank Design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 3, pp. 589-593, March 2018.
[15] S. Alzahrani, S. Elabd, S. Smith, A. Naguib, R. Tantawy and W. Khalil, “Analysis and Design of the Tank Feedline in Millimeter-Wave VCOs,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 5, pp. 2668-2679, May 2022.
[16] J. -Y. Hsieh and K. -Y. Lin, “A 0.7-mW LC Voltage-Controlled Oscillator Leveraging Switched Biasing Technique for Low Phase Noise,” IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 66, no. 8, pp. 1307-1310, Aug. 2019.
[17] Y. Jiang, C. Shen, T. Wu, H. Chen, S. Ma and J. Ren, “A 5-8 GHz Wideband and Low Phase Noise Cross-Coupled LC VCO Using 6-bit DCCA in 40nm CMOS Process,” IEEE Solid-State and Integrated Circuit Technology (ICSICT), Nangjing, China, 2022, pp. 1-3.
[18] G. Li, L. Liu, Y. Tang and E. Afshari, “A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1295-1308, June 2012.
[19] H. Zhang and Q. Xue, “Design of Wideband Low Phase Noise Class-C QVCO With Low Amplitude and Phase Errors,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 724-726, Nov. 2015.
[20] Y. -J. Moon, Y. -S. Roh, C. -Y. Jeong and C. Yoo, “A 4.39–5.26 GHz LC-Tank CMOS Voltage-Controlled Oscillator With Small VCO-Gain Variation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 524-526, Aug. 2009.
[21] W. Wu et al., “A 14-nm Ultra-Low Jitter Fractional-N PLL Using a DTC Range Reduction Technique and a Reconfigurable Dual-Core VCO,” IEEE J. Solid-State Circuits, vol. 56, no. 12, pp. 3756-3767, Dec. 2021.
[22] Jaewook Shin et al., “A wideband fractional-N frequency synthesizer with linearized coarse-tuned VCO for UHF/VHF mobile broadcasting tuners,” in Proc. IEEE Asian Solid-State Circuit Conf., Jeju, 2007, pp. 440-443.
[23] C. T. Fu and H. C. Luong, “A 0.8-V CMOS quadrature LC VCO using capacitive coupling,” in Proc. IEEE Asian Solid-State Circuit Conf., Jeju, Korea (South), 2007, pp. 436-439.
[24] U. Decanis, A. Ghilioni, E. Monaco, A. Mazzanti, F. Svelto, “A mm-Wave quadrature VCO based on magnetically coupled resonators,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp.280-282, Feb. 2011.
[25] A. Rofougaran, J. Rael, M. Rofougaran and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, 1996, pp. 392-393.
[26] J. -P. Hong, S. -J. Yun, N. -J. Oh and S. -G. Lee, “A 2.2-mW Backgate Coupled LC Quadrature VCO With Current Reused Structure,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 298-300, April 2007.
[27] Hye-Ryoung Kim, Seung-Min Oh, Sung-Do Kim, Young-Sik Youn and Sang-Gug Lee, “Low power quadrature VCO with the back-gate coupling,” IEEE ESSCIRC, Estoril, Portugal, 2003, pp. 699-701.
[28] X. Ding, H. Yu, B. Yu, Z. Xu and Q. J. Gu, “A Superharmonic Injection based G-band Quadrature VCO in CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, 2020, pp. 345-348.
[29] Z. Zhang, G. Zhu and C. Patrick Yue, “A 0.65-V 12–16-GHz Sub-Sampling PLL With 56.4-fsrms Integrated Jitter and −256.4-dB FoM,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1665-1683, June 2020.
[30] Y. Lim et al., “17.8 A 170MHz-Lock-In-Range and −253dB-FoMjitter 12-to-14.5GHz Subsampling PLL with a 150µW Frequency-Disturbance-Correcting Loop Using a Low-Power Unevenly Spaced Edge Generator,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, 2020, pp. 280-282.
[31] A. Elkholy, M. Talegaonkar, T. Anand and P. Kumar Hanumolu, “Design and Analysis of Low-Power High-Frequency Robust Sub-Harmonic Injection-Locked Clock Multipliers,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3160-3174, Dec. 2015.
[32] J. Lee and H. Wang, “Study of Subharmonically Injection-Locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[33] A. Mahmoud, P. Andreani and P. Lu, “A 65nm CMOS fraction-N digital PLL with shaped in-band phase noise,” in 2015 Nordic Circuits and Systems Conference (NORCAS), Oslo, Norway, 2015, pp. 1-4.
[34] Y. Wang, K. Ma and K. S. Yeo, “A hybrid CMOS clock divider for PLL of 60GHz transceiver,” in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 2014, pp. 1-4.
[35] R. Wang, J. Li, C. Shi, J. Chen and R. Zhang, “A 25–37GHz VCO Employing Stacked-Coupled Switched Inductor and Co-Tuned Buffer in 55nm CMOS for Multi-Band 5G mmW Applications,” ” in Proc. IEEE 20th Top. Meeting Silicon Monolithic Integr. Circuits RF Syst. (SiRF), San Diego, CA, USA, 2021, pp. 37-39.
[36] Liu Qing, Sun Jiangtao, S. Kurachi, N. Itoh and T. Yoshimasu, “A switched-inductor based VCO with an ultra-wideband tuning range of 87.6 %,” in Proc. IEEE 8th Int. Conf. ASIC, Changsha, China, 2009, pp. 355-358.
[37] P. Agarwal, Partha Pratim Pande and D. Heo, “25.3 GHz, 4.1 mW VCO with 34.8% tuning range using a switched substrate-shield inductor,” in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, 2015, pp. 1-4.
[38] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[39] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[40] Chi-Hung Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6 mm/sup 2/,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec. 1998.
[41] J. Zhang, N. Sharma and K. K. O, “21.5-to-33.4 GHz Voltage-Controlled Oscillator Using NMOS Switched Inductors in CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 478-480, July 2014.
[42] B. Sadhu, T. Anand and S. K. Reynolds, “A Fully Decoupled LC Tank VCO Topology for Amplitude Boosted Low Phase Noise Operation,” IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2488-2499, Sept. 2018.
[43] P. Agarwal et al., “Switched Substrate-Shield-Based Low-Loss CMOS Inductors for Wide Tuning Range VCOs,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 2964-2976, Aug. 2017.
[44] M. Haghi Kashani, R. Molavi and S. Mirabbasi, “A 2.3-mW 26.3-GHz Gm-Boosted Differential Colpitts VCO With 20% Tuning Range in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 4, pp. 1556-1565, April 2019.
[45] D. Yang, H. Wang, D. Zeng, H. Zheng, L. Zhang and Z. Yu, “Design of a 24GHz low phase-noise,wide tuning-range VCO with optimized switches in capacitor array and bias filtering technique,” IEEE Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China, 2010, pp. 696-698.
[46] W. Tan, T. Wu, Z. Xing, Y. Peng, H. Liu and K. Kang, “A 21.95-24.25 GHz Class-C VCO for 24 GHz FMCW Radar Applications,” in Proc. IEEE MTT-S Int. Wireless Symp., Guangzhou, China, 2019, pp. 1-3.
[47] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
[48] S. Lee, I. Choi, H. Kim and B. Kim, “A Sub-mW Fully Integrated Wide-Band Receiver for Wireless Sensor Network,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 319-321, May 2015.
[49] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[50] E. Hegazi and A. A. Abidi, “Varactor characteristics, oscillator tuning curves, and AM-FM conversion,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1033-1039, June 2003.
[51] B. Soltanian and P. Kinget, “AM-FM conversion by the active devices in MOS LC-VCOs and its effect on the optimal amplitude,” in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), San Francisco, CA, USA, 2006, pp. 4 pp.-108.
[52] J. Groszkowski, “The Interdependence of Frequency Variation and Harmonic Content, and the Problem of Constant-Frequency Oscillators,” Proc. IRE, vol. 21, no. 7, pp. 958-981, July 1933.
[53] A. Bevilacqua and P. Andreani, “On the bias noise to phase noise conversion in harmonic oscillators using Groszkowski theory,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Rio de Janeiro, Brazil, 2011, pp. 217-220.
[54] D. Murphy, H. Darabi and H. Wu, “Implicit Common-Mode Resonance in LC Oscillators,” IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 812-821, March 2017.
[55] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[56] A. Goel and H. Hashemi, “Frequency Switching in Dual-Resonance Oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 571-582, March 2007.
[57] Y. Hu, T. Siriburanon and R. B. Staszewski, “A 30-GHz class-F23 oscillator in 28nm CMOS using harmonic extraction and achieving 120 kHz 1/f3 corner,” IEEE ESSCIRC, Leuven, Belgium, 2017, pp. 87-90.
[58] H. Guo, Y. Chen, P. -I. Mak and R. P. Martins, “A 0.083-mm2 25.2-to-29.5 GHz Multi-LC-Tank Class-F234 VCO With a 189.6-dBc/Hz FOM,” IEEE Solid-State Circuits Lett., vol. 1, no. 4, pp. 86-89, April 2018.
[59] Z. Wang, K. Ma, Z. Ma, H. Shi, H. Fu and J. Xu, “A Reconfigurable Injection-Locked LO Generator With a Wideband-Harmonic-Shaping Class-F23 VCO for Multibands 5G mm-Wave,” IEEE Trans. Microw. Theory Techn.
[60] H. -Y. Chang and Y. -T. Chiu, “K-Band CMOS Differential and Quadrature Voltage-Controlled Oscillators for Low Phase-Noise and Low-Power Applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 46-59, Jan. 2012.
[61] H. Jia, B. Chi and Z. Wang, “An 8.2 GHz triple coupling low-phase-noise class-F QVCO in 65nm CMOS,” IEEE ESSCIRC, Graz, Austria, 2015, pp. 124-127.
[62] I. -S. Shen and C. F. Jou, “A X-Band Capacitor-Coupled QVCO Using Sinusoidal Current Bias Technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 2, pp. 318-328, Feb. 2012.
[63] S. -Y. Lin and H. -K. Chiou, “A Modified High Phase Accuracy SIC-QVCO Using a Complementary-Injection Technique,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 222-224, March 2019.
[64] P. -Y. Wang, G. -Y. Su, Y. -C. Chang, D. -C. Chang and S. S. H. Hsu, “A low phase noise quadrature phase oscillator with frequency pulling suppression technique,” in IEEE MTT-S Int. Microw. Symp. Dig., Honololu, HI, USA, 2017, pp. 1145-1147.
[65] M. T. Amin, P. -I. Mak and R. P. Martins, “A 0.137 mm^2 9 GHz Hybrid Class-B/C QVCO With Output Buffering in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 10, pp. 716-718, Oct. 2014.
[66] Yin-Cheng Chang, Yuan-Chia Hsu, Shuw-Guann Lin, Ying-Zong Juang and Hwann-Kaeo Chiou, “On-wafer single contact quadrature accuracy measurement using receiver mode in four-port vector network analyzer,” IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, USA, 2008.
[67] H. O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 295-299, Feb. 1998.
[68] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked 187 loops,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 545-548, 1999-Jun.
[69] F. Xiangning, L. Bin, Y. Likai and W. Yujie, “CMOS Phase Frequency Detector and Charge Pump for Wireless Sensor Networks,” in IEEE MTT-S Int. Microw. Symp. Dig., Nanjing, China, 2012, pp. 1-4.
[70] J. Gong, E. Charbon, F. Sebastiano and M. Babaie, “A Low-Jitter and Low-Spur Charge-Sampling PLL,” IEEE J. Solid-State Circuits, vol. 57, no. 2, pp. 492-504, Feb. 2022.
[71] Y. Zhao, M. Forghani and B. Razavi, “A 20-GHz PLL With 20.9-fs Random Jitter,” IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1597-1609, June 2023.
[72] J. -H. Tsai, C. -H. Chao and H. -D. Shih, “A X-band fully integrated CMOS frequency synthesizer,” in IEEE Asia–Pacific Microw. Conf., Kaohsiung, Taiwan, 2012, pp. 1226-1228.
[73] J. -H. Tsai, C. -Y. Hsu and C. -H. Chao, “An X-band 9.75/10.6 GHz low-power phase-locked loop using 0.18-μm CMOS technology,” in Proc. 10th Eur. Microw. Integr. Circuits Conf. (EuMIC), Paris, France, 2015, pp. 238-241.
[74] H. Alsuraisry, C. -H. Yim, J. -H. Cheng, J. -H. Tsai and T. -W. Huang, “A X-band frequency synthesizer for FMCW radar in 180-nm CMOS,” in IEEE Asia–Pacific Microw. Conf., Nanjing, China, 2015, pp. 1-3.
[75] 呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國105年。 |