博碩士論文 110521160 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.149.247.136
姓名 陳昱廷(Yu-Ting Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 實現瞬時讀取且長耐久性(>10^12次)之三位 元鐵電場效應電晶體製程技術與可靠度分析
(Development and Reliability Analysis of 3 Bits-Per-Cell Ferroelectric FETs Achieving Immediate Read-After-Write and High Endurance (>10^12 Cycles))
相關論文
★ 可實現高溫資料保留、多層儲存單元與高耐久度鐵電電晶體之多功能閘極與HfO2/ZrO2超晶格堆疊研究★ H2電漿處理之超薄IGZO種子層的低電壓 鐵電電容器以實現30ns/3V讀寫速度且高儲存密度之每單元3位元FeNAND快閃記憶體
★ 應力工程和表面能對p型氧化錫(SnO)寬能隙相穩定化的影響★ 高速、低能耗、微型1T-PMOS TRNG陣列的設計和特性描述
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著物聯網、人工智慧、自動駕駛等領域的迅速發展,對於存儲技術的需求也將不斷增加。在這些新興記憶體技術中,非揮發性記憶體(Non-Volatile Memory,NVM)扮演著越來越重要的角色。NVM的主要特色是在斷電後能夠長時間保持原本的儲存狀態,同時需具備良好的可擴張性、高速、低功耗、較長的壽命以及耐久性。
這使得NVM成為未來數據存儲和處理中不可或缺的一部分。
在本次實驗中,我們專注於非揮發性記憶體中常見的鐵電記憶體,特別是鐵電電容記憶體(FeCAP)和鐵電場效應電晶體(FeFET)這兩種元件。我們從製程技術出發,詳細記錄了製程過程,並從材料分析和電性量測兩個角度對其進行了評估和比較。最終,我們提出了一種利用氫電漿修復介面處捕捉電荷的方法,並有效地減少了在低溫薄膜沉積時產生非預期的碳元素。這一方法提升了元件的穩定性、操作速度和可靠性。
在這項實驗中,我們探討了氫電漿對以鋯鈰氧化物(HZO)為基礎的FeFET的開關電壓、保久性和耐久性的提升。透過X光光電子能譜儀(X-ray photoelectron spectroscopy,XPS),我們展示了經過氫電漿處理後,能有效降低絕緣層中碳的濃度,從原本的34%降至17.9%,並改善了由氧空缺引起的電荷捕捉現象。氫電漿加速了AlOx 與Si之間的擴散,除了提升絕緣層的介電質外,同時降低了去極化電場,並將崩潰電場的強度從未經過氫電漿處理的11MV/cm提升到12.4MV/cm。此外,經過氫電漿處理的FeFET展現了穩定的讀寫後保久性和改善的耐久性,即使在達到1010次讀寫後也沒有發生故障。最後,我們透過提高溫度來加速元件故障速度,藉此推算元件保久性,我們發現氫電漿處理的元件再搭配上固融體結構的HZO,在高溫下的保久性比傳統矽基FeFET高了18°C,達到97.3°C。這種高溫熱穩定性行為與固融體HfO2/ZrO2有序地排列相關,在這種結構下大幅提升了HZO的熱導性,進而提升了元件的高溫保久性。這項研究對於低功耗FeFET的發展和對FeFET操作的理解具有重要意義。
摘要(英) With the rapid development of fields such as the Internet of Things (IoT), artificial intelligence (AI), and autonomous driving, the demand for storage technology has become
increasingly crucial today. The emerging Non-Volatile Memory (eNVM) will play an indispensable role in the future. The main feature of NVM lies in its capacity to maintain the
original storage state after power-off, while also requiring good scalability, high speed, low power consumption, and excellent reliability. This makes eNVM an essential device of future data storage and processing.
In this work, we focused on common ferroelectric memories within NVM, specifically the Ferroelectric Capacitor (FeCAP) and Ferroelectric Field-Effect Transistor (FeFET). We began with the process of devices, then proceeded to evaluate and compare them through both material analysis and electrical property measurement. Finally, we proposed a method to repair the trapping charges at the interface and effectively remove the unexpected carbon elements generated during low-temperature thin film deposition by utilizing H2 plasma.
We evaluated the effect of remote H2 plasma treatment on improving the performance of FeFETs based on HfZrO (HZO). Through X-ray photoelectron spectroscopy (XPS), H2 plasma reduced the C concentration in the insulating layer, effectively decreasing it from the original 34% to 17.9%. This treatment also improved the trapping charge caused by
oxygen vacancies. It accelerated oxygen diffusion between AlOx and Si, enhancing the dielectric properties of the interfacial layer. Moreover, it increased the breakdown field from 11MV/cm to 12.4MV/cm compared to untreated samples. Furthermore, the H2 plasma-treated FeFET exhibited stable retention and improved endurance, with no failures occurring even after reaching 1010 cycles. Finally, to accelerate device failure time, we increased the temperature and estimated device retention. We found that devices treated with H2 plasma paired with a superlattice structure of HZO exhibited 18°C higher retention compared to traditional silicon-based FeFETs, reaching 97.3°C. This high-temperature thermal stability behavior is correlated with the ordered arrangement of the HfO2/ZrO2 super-lattice. In this structure, the thermal conductivity of HZO is significantly enhanced, thereby improving the high-temperature retention of the devices. This research holds significant importance for the development of high-speed, low-power FeFETs and enhances the understanding of FeFET
operation mechanisms.
關鍵字(中) ★ 鐵電
★ 鐵電場效應電晶體
★ 非揮發性記憶體
★ 鋯鈰氧化物
關鍵字(英) ★ Ferroelectric
★ FeFET
★ Non-Volatile Memory
★ HZO
論文目次 摘要.................................................................................................................................. i
Abstract............................................................................................................................. iii
致謝 .................................................................................................................................... v
目錄 ..................................................................................................................................vii
圖目錄 ................................................................................................................................ x
第一章 序論 ........................................................................................................... - 1 -
1.1 新興記憶體 .................................................................................................... - 1 -
1.1.1 鐵電場效應電晶體(FeFET) ............................................................ - 2 -
1.2 鐵電材料與特性 ............................................................................................ - 4 -
1.2.1 鐵電極化機制 ..................................................................................... - 5 -
1.2.2 HZO鐵電材料 ..................................................................................... - 8 -
1.3 鐵電材料面臨問題/缺點 ............................................................................. - 10 -
1.3.1 氧空缺 (Oxygen Vacancy) ............................................................... - 10 -
1.3.2 疲勞效應 (Fatigue Effect) ................................................................ - 11 -
1.3.3 尺寸效應 (Size Effect) ..................................................................... - 12 -
1.3.4 印恆效應 (Imprint Effect) ................................................................ - 12 -
第二章 實驗流程 ................................................................................................. - 13 -
2.1 FeFET製程步驟 ........................................................................................... - 13 -
2.1.1 Wet bench ........................................................................................... - 14 -
2.1.2 原子層沉積系統 ALD ..................................................................... - 15 -
2.1.3 金屬物理氣相沉積 PVD ................................................................. - 16 -
2.1.4黃光微影 ............................................................................................ - 17 -
2.1.5乾式蝕刻 ............................................................................................ - 18 -
2.1.6離子佈質 ............................................................................................ - 18 -
2.1.7 RTA ..................................................................................................... - 19 -
第三章FeFET 電性量測以及材料分析 ................................................................... - 20 -
3.1 電性量測 ...................................................................................................... - 20 -
3.1.1 ID-VG ................................................................................................... - 20 -
3.1.2 Retention............................................................................................. - 22 -
3.1.3 Endurance ........................................................................................... - 24 -
3.1.4 Multi-level Cell................................................................................... - 25 -
3.1.5 Operation Speed ................................................................................. - 26 -
3.2 材料分析 ...................................................................................................... - 27 -
3.2.1 SEM .................................................................................................... - 27 -
3.2.2 TEM .................................................................................................... - 28 -
3.2.3 XRD .................................................................................................... - 29 -
3.2.4 XPS ..................................................................................................... - 31 -
第四章 結果與討論 ................................................................................................... - 32 -
4.1氫電漿對以超晶格HZO FeFET的改善 ..................................................... - 32 -
4.1.1氫電漿處理FeFET的改善模型 ....................................................... - 32 -
4.2 氫電漿處理之材料分析 .............................................................................. - 35 -
4.2.1 XPS ..................................................................................................... - 35 -
4.3 氫電漿處理電性量測 .................................................................................. - 37 -
4.3.1 基礎電性 ........................................................................................... - 37 -
4.3.2 三位元操作 ....................................................................................... - 40 -
4.3.3 可靠度量測 ....................................................................................... - 43 -
4.3.4 操作速度 ........................................................................................... - 46 -
結論 ............................................................................................................................. - 48 -
參考文獻 ..................................................................................................................... - 49 -
參考文獻 [1] T. Mikolajick et al., “The Past, the Present, and the Future of Ferroelectric Memories”,
IEEE Trans. Electron Devices, VOL. 67, NO. 4, APRIL 2020
[2] Nitin Dahad: Memory Startup Brings FeFET Solutions to NVM Market, 2020 年 11 月 23
日, 取自: https://www.eetasia.com/memory-startup-brings-fefet-solutions-to-nvm-market/
[3] Asif Islam Khan et al., “The future of ferroelectric field-effect transistor technology”,
Nat. Electron, VOL. 3, OCTOBER 2020
[4] T. Mikolajick et al., “Next generation ferroelectric materials for semiconductor process
integration and their applications”, J. Appl. Phys. 129, 100901, MARCH 2021
[5] T. S. Böscke et al., “Ferroelectricity in hafnium oxide thin films” , Appl. Phys. Lett 99,
102903, SEPTEMBER 2011
[6] M.H.Park et al., “A comprehensive study on the structural evolution of HfO2 thin films
doped with various dopants”, J. Mater. Chem. C 5(19), 4677–4690, APRIL 2017
[7] Jiajia Chen, Chengji Jin et al., “Impact of Oxygen Vacancy on Ferroelectric
Characteristics and Its Implication for Wake-Up and Fatigue of HfO2-Based Thin Films” ,
IEEE Trans. Electron Devices, VOL. 69, NO. 9, SEPTEMBER 2022
[8] Takao Shimizu et al., “Contribution of oxygen vacancies to the ferroelectric
behavior of Hf0.5Zr0.5O2 thin films”, Appl. Phys. Lett 106, 112904,MARCH 2015
[9] P.J. Liao et al., “Characterization of Fatigue and Its Recovery Behavior in Ferroelectric
HfZrO”, VLSI symposium, Kyoto, Japan, JUNE 2021
[10] S.H. Park et al., “Overcoming Size Effects in Ferroelectric Thin Films”, Adv. Physics
Res. 2, 200096 , MAY 2023 - 61 -
[11] Yaru Ding et al., “Wake-Up and Imprint Effects in Hafnium Oxide-Based Ferroelectric
Capacitors during Cycling with Different Interval Times”, Electronics 13(6), 1021, MARCH
2024
[12] 台灣半導體研究中心, 儀器設備列表, 台灣半導體研究中心, 新竹, 2024
網址: https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
[13] M.H. Park et al., “Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ,
High Temperature X-Ray Diffraction”, Adv. Electron. Mater. 4, 1800091, MAY 2018
[14] D.J.J. Loy et al., “Conduction Mechanisms on High Retention Annealed MgO-based
Resistive Switching Memory Devices”, Sci. Rep 8, 14774, OCTOBER 2018
[15] M.J. Lee et al., “A fast, high-endurance and scalable non-volatile memory device made
from asymmetric Ta2O5−x/TaO2−x bilayer structures”, Nat. Mater, vol 10, AUGUST 2011
[16] C.Y.Liao et al., “Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for
High-Density Nonvolatile Memory”, IEEE Electron Device Lett, VOL. 42, NO. 4, APRIL
2021
[17] Taha Soliman et al., “First demonstration of in-memory computing crossbar using multi
level Cell FeFET”, Nat. Commun 14, 6348, OCTOBER 2023
[18] S.C. Yan et al., “Multilevel Cell Ferroelectric HfZrO2 FinFET With High Speed and
Large Memory Window Using AlON Interfacial Layer”, IEEE Electron Device Lett, VOL.
44, NO. 1, JANUARY 2023
[19] M. Pešić et al., “Physical Mechanisms behind the Field-Cycling Behavior of HfO2
Based Ferroelectric Capacitors”, Adv. Funct. Mater. 26, 4601-4612, MAY 2016
[20]V. Gaddam, D. Das et al., “Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric
HZO Films for Heightened Remanent Polarization in MFM Capacitors”, IEEE Trans Electron
Devices, VOL. 67, NO. 2, 2020
指導教授 唐英瓚(Ying-Tsan Tang) 審核日期 2024-4-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明