參考文獻 |
[1] Yu, Shimeng. Semiconductor Memory Devices and Circuits. CRC Press, 2022.
[2] Wong, H-S. Philip, et al. "Phase change memory." Proceedings of the IEEE 98.12 (2010): 2201-2227.
[3] Pan, Feng, et al. "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance." Materials Science and Engineering: R: Reports 83 (2014): 1-59.
[4] Sousa, Ricardo C., and I. Lucian Prejbeanu. "Non-volatile magnetic random access memories (MRAM)." Comptes Rendus Physique 6.9 (2005): 1013-1021.
[5] M. Trentzsch et al., “A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs,” in IEDM Tech. Dig., Dec. 2016, pp. 294–297.
[6] S. Dunkel et al., “A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond,” in IEDM Tech. Dig., Dec. 2017, pp. 485–488
[7] Deng, Shan, et al. "Overview of ferroelectric memory devices and reliability aware design optimization." Proceedings of the 2021 on Great Lakes Symposium on VLSI. 2021.
[8] Schenk, Tony, and Stefan Mueller. "A new generation of memory devices enabled by ferroelectric hafnia and zirconia." 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF). IEEE, 2021.
[9] Park, Ju Yong, et al. "Revival of Ferroelectric Memories Based on Emerging Fluorite‐Structured Ferroelectrics." Advanced Materials (2022): 2204904.
[10] Takeuchi, Ken, and An Chen. "Ferroelectric FET Memory." Emerging Nanoelectronic Devices (2014): 110-122.
[11] A. Sheikholeslami and P. G. Gulak, "A survey of circuit innovations in ferroelectric random-access memories," in Proceedings of the IEEE, vol. 88, no. 5, pp. 667-689, May 2000.
[12] Toprasertpong, K., Takenaka, M. & Takagi, S. On the strong coupling of polarization and charge trapping in HfO2/Si-based ferroelectric field-effect transistors: overview of device operation and reliability. Appl. Phys. A 128, 1114 (2022).
[13] Sakai, S., Takahashi, M., Takeuchi, K., Li, Q.H., Horiuchi, T., Wang, S., Yun, K.Y., Takamiya, M., and Sakurai, T. (May. 2008) Highly Scalable Fe(Ferroelectric)-NAND Cell with MFIS(Metal-Ferroelectric-Insulator-Semiconductor) Structure for Sub-10nm Tera-Bit Capacity NAND Flash Memories, Non-Volatile Semiconductor Memory Workshop (NVSMW), pp. 103–104.
[14] S. Tanakamaru, T. Hatanaka, R. Yajima, M. Takahashi, S. Sakai and K. Takeuchi, "A 0.5V operation, 32% lower active power, 42% lower leakage current, ferroelectric 6T-SRAM with VTH self-adjusting function for 60% larger St atic Noise Margin," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4.
[15] S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, in 2017 IEEE Int. Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ, USA 2017.
[16] H. Bae, S. G. Nam, T. Moon, Y. Lee, S. Jo, D.-H. Choe, S. Kim, K.-H. Lee, J. Heo, in 2020 IEEE Int. Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ, USA 2020.
[17] K. Lee, S. Kim, J. -H. Lee, B. -G. Park and D. Kwon, "Ferroelectric-Metal Field-Effect Transistor With Recessed Channel for 1T-DRAM Application," in IEEE Journal of the Electron Devices Society, vol. 10, pp. 13-18, 2022.
[18] S.-Y. Lee, C.-C. Lee, Y.-S. Kuo, S.-W. Li, T.-S. Chao, IEEE J. Electron Devices Soc. 2021, 9, 236.
[19] C.-Y. Liao, K.-Y. Hsiang, Z.-F. Lou, H.-C. Tseng, C.-Y. Lin, Z.-X. Li, F.-C. Hsieh, C.-C. Wang, F.-S. Chang, W.-C. Ray, Y.-Y. Tseng, S. T. Chang, T.-C. Chen, M. H. Lee, in IEEE 2022 Symposium on VLSI Technology. Circuits Digest of Technical Papers, IEEE, Piscataway, NJ, USA 2022
[20] J. Valasek, “Piezoelectric and Allied Phenomena in Rochelle Salt,” Phys. Rev., 17, 475–81 (1921).
[21] D. A. Buck, “Ferroelectrics for digital information storage and switching,” MIT Digit. Comput. Lab., Cambridge, MA, USA, Tech. Rep. 555, 1952.
[22] T. Mikolajick, U. Schroeder and S. Slesazeck, "The Past, the Present, and the Future of Ferroelectric Memories," in IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1434-1443, April 2020.
[23] P. Gnadinger, “High speed nonvolatile memories employing ferroelectric technology,” in Proc. VLSI Comput. Peripherals, 1989, pp. 1-20–1-23.
[24] D. Takashima, “Overview of FeRAMs: Trends and perspectives,” in Proc. 11th Annu. Non-Volatile Memory Technol. Symp., Nov. 2011, pp. 1–6.
[25] K. R. Udayakumar et al., “Low-power ferroelectric random access memory embedded in 180 nm analog friendly CMOS technology,” in Proc. 5th IEEE Int. Memory Workshop, May 2013, pp. 128–131.
[26] S. Yoshiro et al., “High-density and high-speed 128 Mb chain FeRAM with SDRAM-compatible DDR2 interface,” in Proc. Symp. VLSI Technol., pp. 218–219, 2009
[27] J. Müller, E. Yurchuk, T. Schlösser et al., “ Ferroelectricity in HfO2 enables nonvolatile 78 data storage in 28 nm HKMG.” Symposium on VLSI Technology (VLSI), pp. 25-26, 2012.
[28] T. Böscke, J. Müller, D. Braeuhaus, et al., “Ferroelectricity in Hafnium Oxide Thin Films,” Applied Physics Letters, vol. 99, pp. 102903-102903, 2011.
[29] J. Müller, T. S. Böscke, U. Schröder, et al., “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, vol. 12, pp. 4318-4323, 2012.
[30] T. Y. Kim, S. K. Kim, and S. W. Kim, “Application of ferroelectric materials for improving output power of energy harvesters,” Nano Convergence, vol. 5, pp. 30, 2018
[31] S. Mueller, C. Adelmann, A. Singh, et al., “Ferroelectricity in Gd-Doped HfO2 Thin 79 Films,” ECS Journal of Solid State Science and Technology, vol. 1, pp. N123-N126, 2012.
[32] T. Olsen, U. Schröder, S. Müller, et al., “Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties,” Applied Physics Letters, vol. 101, pp. 082905, 2012.
[33] S. Mueller, J. Mueller, A. Singh, et al., “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films” Advanced Functional Materials, vol. 22, pp. 2412-2417, 2012.
[34] M. H. Park, Y. H. Lee, H. J. Kim, et al., “Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment,” Nanoscale, vol. 9, pp. 9973-9986, 2017
[35] T. Shimizu et al., “Ferroelectricity in HfO2 and related ferroelectrics,” Journal of the Ceramic Society of Japan, 2018, 126, 667-674.
[36] M. Si et al., “Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide,” Applied Physics Letters, 2019, 115, 072107.
[37] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, "Ferroelectricity and Antiferroelectricity of doped thin HfO2-based films," Advanced Materials, vol. 27, no. 11, pp. 1811-1831, 2015.
[38] X. Liu, L. Yao, Y. Cheng, and B. Xiao, "High annealing temperature assisted broadening of the ferroelectric concentration window in Al:HfO2 MFS structures," Japanese Journal of Applied Physics, vol. 58, no. 9, p. 090903, 2019.
[39] C. Richter, T. Schenk, M. H. Park, F. A. Tscharntke, E. D. Grimley, J. M. LeBeau, C. Zhou, C. M. Fancher, J. L. Jones, T. Mikolajick, and U. Schroeder, "Si doped hafnium oxide—A “fragile” ferroelectric system," Advanced Electronic Materials, vol. 3, no. 10, p. 1700131, 2017.
[40] S. J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J. S. Lee, J. Lee, H. S. Kim, Y.-C. Byun, A. T. Lucero, C. D. Young, S. R. Summerfelt, T. San, L. Colombo, and J. Kim, "Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget," Applied Physics Letters, vol. 111, no. 24, p. 242901, 2017.
[41] D. Lehninger, R. Olivo, T. Ali, M. Lederer, T. Kämpfe, C. Mart, K. Biedermann, K. Kühnel, L. Roy, M. Kalkani, and K. Seidel, "Back-end-of-line compatible lowtemperature furnace anneal for ferroelectric hafnium zirconium oxide formation," physica status solidi (a), vol. 217, no. 8, p. 1900840, 2020
[42] S. J. Kim, J. Mohan, J. Lee, J. S. Lee, A. T. Lucero, C. D. Young, L. Colombo, S. R. Summerfelt, T. San, and J. Kim, "Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400°C) Hf0.5Zr0.5O2 films," Applied Physics Letters, vol. 112, no. 17, p. 172902, 2018
[43] S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C.-H. Hsu, A. J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin, "Enhanced ferroelectricity in ultrathin films grown directly on silicon," Nature, vol. 580, no. 7804, pp. 478-482, 2020.
[44] J. Müller, T. S. Böscke, D. Bräuhaus, et al., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 99, pp. 112901, 2011
[45] Park, Min Hyuk, et al. "A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices." Applied Physics Reviews 6.4 (2019).
[46] Lu, Y.; Shieh, J.; Tsai, F. Induction of ferroelectricity in nanoscale ZrO2/HfO2 bilayer thin films on Pt/Ti/SiO2/Si substrates. Acta Mater. 2016, 115, 68– 75
[47] Weeks, S. L.; Pal, A.; Narasimhan, V. K.; Littau, K. A.; Chiang, T. Engineering of ferroelectric HfO2–ZrO2 nanolaminates. ACS Appl. Mater. Interfaces 2017, 9 (15), 13440– 13447
[48] Park, M. H.; Kim, H. J.; Lee, G.; Park, J.; Lee, Y. H.; Kim, Y. J.; Moon, T.; Kim, K. D.; Hyun, S. D.; Park, H. W.A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 2019, 6 (4), 041403,
[49] Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Do Kim, K.; Hyun, S. D.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films. Nanoscale 2018, 10 (2), 716– 725
[50] Park, M. H.; Lee, Y. H.; Hwang, C. S. Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory. Nanoscale 2019, 11 (41), 19477– 19487
[51] Park, M. H.; Lee, Y. H.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides. Adv. Electron. Materials 2019, 5 (3), 1800522
[52] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,” Physical Review B, vol. 82, pp. 014109, 2010
[53] M. Hoffmann, M. Pešić, K. Chatterjee, et al., “Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2,” Advanced Functional Materials, vol. 26, pp. 8643-8649, 2016.
[54] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,” Physical Review B vol. 82, pp. 014109, 2010.
[55] N. Gong, X. Sun, H. Jiang, et al., “Nucleation limited switching (NLS) model for HfO2- based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics,” Applied Physics Letters, vol. 112, pp. 262903, 2018.
[56] Yang, Sang Mo, et al. "Nanoscale observation of time‐dependent domain wall pinning as the origin of polarization fatigue." Advanced Functional Materials 22.11 (2012): 2310-2317.
[57] Song, Seul Ji, et al. "Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors." Scientific reports 6.1 (2016): 20825.
[58] Lim, So Yeon, et al. "Nonlinear domain wall velocity in ferroelectric Si-doped HfO2 thin film capacitors." Applied Physics Letters 118.10 (2021).
[59] M. Materano, P. D. Lomenzo, A. Kersch, et al., “Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics,” Inorganic Chemistry Frontiers, vol. 8, pp. 2650-2672, 2021.
[60] Lomenzo, Patrick D., et al. "TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films." Journal of Applied Physics 117.13 (2015).
[61] Umezawa, N., et al. "First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high-k dielectrics." Applied Physics Letters 86.14 (2005).
[62] S. Li, D. Zhou, Z. Shi, et al., “Involvement of Unsaturated Switching in the Endurance Cycling of Si-doped HfO2 Ferroelectric Thin Films,” Advanced Electronic Materials, vol. 6, pp. 2000264, 2020.
[63] i, D. Zhou, Z. Shi, et al., “Temperature-Dependent Subcycling Behavior of SiDoped HfO2 Ferroelectric Thin Films,” ACS Applied Electronic Materials, vol. 3, pp. 2415- 2422, 2021.
[64] N. Gong, and T. Ma. “A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation,” IEEE Electron Device Letters, vol. 39, pp. 15-18, 2018.
[65] R. A. Izmailov, J. W. Strand, L. Larcher, et al., “Electron trapping in ferroelectric HfO2,” Physical Review Materials, vol. 5, pp. 034415, 2021
[66] T. P. Ma, and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive ?,” Electron Device Letters, IEEE, vol. 23, pp. 386-388, 2002.
[67] X. Pan, and T. P. Ma. “Retention mechanism study of the ferroelectric field effect transistor,” Applied Physics Letters, vol. 99, pp. 013505, 2011.
[68] N. Gong, and T. Ma, “Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective,” IEEE Electron Device Letters, vol. 37, pp. 1123-1126, 2016.
[69] Yuan, Peng, et al. "Microscopic mechanism of imprint in hafnium oxide-based ferroelectrics." Nano Research 15.4 (2022): 3667-3674.
[70]Buragohain, P. Erickson, A.; Kariuki, P.; Mittmann, T.; Richter, C.;Lomenzo, P. D.; Lu, H.D.; Schenk, T.; Mikolajick, T.; Schroeder,U. et al. Fluid imprint and inertial switching in ferroelectric La: HfO2 capacitors. ACS Appl. Mater. Interfaces 2019, 11, 35115–35121.
[71] Alireza Kashir et al 2021 Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering ACS Appl. Electron. Mater 3 629–638.
[72] Mihaela Ioana Popovici et al 2022 High-Endurance Ferroelectric (La, Y) and (La, Gd) Co-Doped Hafnium Zirconate Grown by Atomic Layer Deposition ACS Appl. Electron. Mater 4 1823–1831.
[73] Y. Lee et al 2021 The Influence of Top and Bottom Metal Electrodes on Ferroelectricity of Hafnia in IEEE Transactions on Electron Devices 68 523-528.
[74] Xuepei Wang et al 2023 Understanding the Effect of Top Electrode on Ferroelectricity in Atomic Layer Deposited Hf0.5Zr0.5O2 Thin Films ACS Appl. Mater. Interfaces 15 15657−15667.
[75] Shinji Migita et al 2021 Accelerated ferroelectric phase transformation in HfO2/ZrO2 nanolaminates Appl. Phys. Express 14 051006-1-051006-4.
[76] Ruiting Zhao et al 2022 Impact of Molybdenum Oxide Electrode on the Ferroelectricity of Doped-Hafnia Oxide Capacitors in IEEE Transactions on Electron Devices 69 1492-1496.
[77] Katia F. Albertin et al 2010 Study of TiOxNy MOS Capacitors ECS Trans. 31 349.
[78] Nanbo Gong and Tso-Ping Ma 2016 Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective in IEEE Electron Device Letters 37 1123-1126. [79] Uday M. Basheer et al 2016 Current Issues and Problems in the Joining of Ceramic to Metal In book Joining Technologies 8 35.
[80] Aniruddh Vashisth et al 2018 Effect of chemical structure on thermos-mechanical properties of epoxy polymers: Comparison of accelerated ReaxFF simulations and experiments Polymer 158 354-363.
[81] R. Materlik et al 2015 The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model Journal of Applied Physics 117 134109.
[82] Hyuk Park et al 2014 The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity Applied Physics Letters 104 072901.
[83] Beom Yong Kim et al 2023 Top Electrode Engineering for High-Performance Ferroelectric Hf0.5Zr0.5O2 Capacitors Adv. Mater. Technol 2300146.
[84] Youngin Goh et al 2020 Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrodeNanoscale, 12, 9024.
[85] Seung Dam Hyun et al 2018 Dispersion in Ferroelectric Switching Performance of Polycrystalline Hf0.5Zr0.5O2 Thin Films ACS Appl. Mater. Interfaces. 10 35374–35384.
[86] K. He, N. Chen et al 2018 Method for determining crystal grain size by X-ray diffraction Cryst. Res. Technol 53 1700157.
[87] Mimura, T et al 2019 Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness. Appl. Phys. Lett 115 032901
[88] J. Y. Jo et al 2007 “Domain switching kinetics in disordered ferroelectric thin films Phys. Rev. Lett 99 267602.
[89] Kobayashi et al 2022 Mesoscopic-scale grain formation in HfO2-based ferroelectric thin films and its impact on electrical characteristics. Nano Convergence 9 50.
[90] Schroeder, U. et al 2022 Temperature‐Dependent Phase Transitions in HfxZr1‐xO2 Mixed Oxides: Indications of a Proper Ferroelectric Material. Adv. Electron. Mater 385 2200265.
[91] M. Vopsaroiu et al 2010 Thermally activated switching kinetics in second-order phase transition ferroelectrics Phys. Rev. B. 82 024109.
[92] Loy, D.J.J. et al. 2018 Conduction Mechanisms on High Retention Annealed MgO-based Resistive Switching Memory Devices. Sci Rep 8 14774.
[93] Liang, Y. et al 2022 ZrO2-HfO2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability. IEEE Electron Device Lett 43 1451–1454.
[94] Irfan Irfan et al 2012 Work function recovery of air exposed molybdenum oxide thin films Appl. Phys. Lett. 101 093305.
[95] Zhang, Shenglong, et al 2023 First-principles study of thermal transport properties in ferroelectric HfO2 and related fluorite-structure ferroelectrics Physical Chemistry Chemical Physics 25, 17257-17263.
[96] HU, Run, et al. 2020 Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Physical Review X 10.2: 021050.
[97] O′DWYER, Colm, et al. 2017 Scientific and technical challenges in thermal transport and thermoelectric materials and devices. ECS Journal of Solid State Science and Technology 6.3: N3058.
[98] Kavrik, M. S.; Thomson, E.; Chagarov, E.; Tang, K.; Ueda, S.T.; Hou, V.; Aoki, T.; Kim, M.; Fruhberger, B.; Taur, Y.; McIntyre, P.C.; Kummel, A. C. Ultralow Defect Density at Sub-0.5nm HfO2/SiGe Interfaces via Selective Oxygen Scavenging. ACS Appl. Mater. Interfaces 2018, 10 (36), 30794−30802.
[99] Kim, H.; McIntyre, P. C.; On Chui, C.; Saraswat, K. C.;Stemmer, S. Engineering Chemically Abrupt High-k Metal Oxide/silicon Interfaces Using an Oxygen-Gettering Metal Overlayer. J. Appl.Phys. 2004, 96 (6), 3467−3472.
[100] Ando, T. Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging? Materials 2012, 5 (12), 478−500.
[101] Ohler, Nicholas, and Alexis T. Bell. "A Study of the Redox Properties of MoO x/SiO2." The Journal of Physical Chemistry B 109.49 (2005): 23419-23429.
[102] Tasneem, Nujhat, et al. "Remote Oxygen Scavenging of the Interfacial Oxide Layer in Ferroelectric Hafnium–Zirconium Oxide-Based Metal–Oxide–Semiconductor Structures." ACS Applied Materials & Interfaces 14.38 (2022): 43897-43906.
[103] Mulaosmanovic, Halid, et al. "Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance." IEEE Transactions on Electron Devices 66.9 (2019): 3828-3833.
[104] Albertin, Katia Franklin, and Inés Pereyra. "Study of metal‐oxide‐semiconductor capacitors with rf magnetron sputtering TiOxNy films dielectric layer." physica status solidi c 7.3‐4 (2010): 937-940.
[105] Holler, Brian A., et al. "2D semiconductor transistors with van der Waals oxide MoO3 as integrated high‐κ gate dielectric." Advanced Electronic Materials 6.10 (2020): 2000635.
[106] H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1420-1423, 2020.
[107] Cai, Zuocheng, et al. "HZO Scaling and Fatigue Recovery in FeFET with Low Voltage Operation: Evidence of Transition from Interface Degradation to Ferroelectric Fatigue." 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). IEEE, 2023.
[108] Lo, Chieh, et al. "Fabrication of Bilayer Stacked Antiferroelectric/Ferroelectric HfxZr1-xO2 FeRAM and FeFET with Improved Leakage Current and Robust Reliability by Modifying Atomic Layer Deposition Temperatures." IEEE Electron Device Letters (2023).
[109] Ni, Kai, et al. "Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance." IEEE Transactions on Electron Devices 65.6 (2018): 2461-2469.
[110] Mulaosmanovic, Halid, et al. "Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors." ACS applied materials & interfaces 9.4 (2017): 3792-3798.
[111] Dahan, Mor Mordechai, et al. "Sub-Nanosecond Switching of Si: HfO2 Ferroelectric Field-Effect Transistor." Nano Letters 23.4 (2023): 1395-1400.
[112] Mulaosmanovic, Halid, et al. "Interplay between switching and retention in HfO 2-based ferroelectric FETs." IEEE Transactions on Electron Devices 67.8 (2020): 3466-3471.
[113] Lyu, X., et al. "Ferroelectric and anti-ferroelectric hafnium zirconium oxide: Scaling limit, switching speed and record high polarization density." 2019 Symposium on VLSI Technology. IEEE, 2019.
[114] Chen, Yu–Chen, et al. "NLS based modeling and characterization of switching dynamics for antiferroelectric/ferroelectric hafnium zirconium oxides." 2021 IEEE International Electron Devices Meeting (IEDM). IEEE, 2021.
[115] Ma, T. P., and Jin-Ping Han. "Why is nonvolatile ferroelectric memory field-effect transistor still elusive ?." IEEE Electron Device Letters 23.7 (2002): 386-388.
[116] Toprasertpong, Kasidit, Mitsuru Takenaka, and Shinichi Takagi. "On the strong coupling of polarization and charge trapping in HfO2/Si-based ferroelectric field-effect transistors: overview of device operation and reliability." Applied Physics A 128.12 (2022): 1114.
[117] Mulaosmanovic, Halid, et al. "Ferroelectric transistors with asymmetric double gate for memory window exceeding 12 V and disturb-free read." Nanoscale 13.38 (2021): 16258-16266.
[118] Mulaosmanovic, H., et al. "Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells." 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015.
[119] Ali, Tarek, et al. "Impact of the Nonlinear Dielectric Hysteresis Properties of a Charge Trap Layer in a Novel Hybrid High-Speed and Low-Power Ferroelectric or Antiferroelectric HSO/HZO Boosted Charge Trap Memory." IEEE Transactions on Electron Devices 68.4 (2021): 2098-2106.
[120] Yan, Siao-Cheng, et al. "Multilevel Cell Ferroelectric HfZrO FinFET With High Speed and Large Memory Window Using AlON Interfacial Layer." IEEE Electron Device Letters 44.1 (2022): 44-47.
[121] Liao, C-Y., et al. "Multibit ferroelectric FET based on nonidentical double HfZrO 2 for high-density nonvolatile memory." IEEE Electron Device Letters 42.4 (2021): 617-620.
[122] Peng, Hao-Kai, et al. "Improved Immunity to Sub-Cycling Induced Instability for Triple-Level Cell Ferroelectric FET Memory by Depositing HfZrOₓ on NH₃ Plasma-Treated Si." IEEE Electron Device Letters 43.8 (2022): 1219-1222.
[123] Ali, T., et al. "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage." 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019.
[124] C. -Y. Liao et al., "Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, April 2021, doi: 10.1109/LED.2021.3060589. |