博碩士論文 110522032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.141.40.242
姓名 吳睿哲(Rei-Zhe Wu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用虛擬現實語言互動遊戲進行基於機器學習的失語症評估與治療
(Machine Learning based Aphasia Assessment and Treatment using Virtual Reality Language Interactive Game)
相關論文
★ 虛擬實境搭配腦電、心電以及呼吸器設備在心肺同步呼吸訓練對心跳變異與腦波之訓練應用系統與資料分析★ 利用分層共現網絡評估發展遲緩兒童的精細運動
★ 太極大師:基於太極拳的注意力訓練遊戲, 使用動作辨識及平衡分析進行表現評估★ 比較XRSPACE MANOVA中手勢和控制器互動模式的用戶體驗
★ 基於舌頭力量和表面肌電圖的吞嚥智能評估系統★ 基於數據融合模型的機器學習 對甲基苯丙胺使用障礙的多生理訊號號分析
★ 在有干擾的虛擬教室環境下 大人小孩的行為表現與腦神經反應的異同★ 使用映射模型和跨資料集遷移式學習的輕量化居家衰弱症訓練系統
★ 心率生理回饋放鬆訓練對於海洛因使用疾患(HUD)生理資訊之影響分析★ 基於深度學習模型的3D心理旋轉對認知障礙的診斷與評估
★ 評估注意力偵測之穿戴式腦電電極放置有效性★ 基於骨架步態藉由機器學習進行臨床老化衰落分類
★ 用於注意力不足過動症診斷的可解釋多模態融合模型★ 基於VR的自閉症兒童多模態訓練系統的改進
★ 基於深度學習的虛擬現實腦震盪檢測與融合方法★ 建立數位地球:基於Omniverse平台的東南亞衛星雲圖與雷達圖可視化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-20以後開放)
摘要(中) 失語症是一種嚴重影響患者語言能力的疾病。 主要原因通常是中風,但也可能由其他因素引起,例如腦外傷、腫瘤和退化。 患者最常見的臨床表現包括找詞困難、導致言語錯誤、用其他詞替換目標詞以及聽覺理解、閱讀和寫作方面的困難。失語症的常見診斷方法包括臨床量表和非侵入性腦刺激,例如重複經顱磁刺激(rTMS)結合強化語言訓練。 前一種方法比較主觀,需要語言治療師的專業評估,而後者則費用更高。 因此,有效且客觀的診斷方法對於語言治療至關重要。本研究提出了一種評估失語症的自動化方法。 本實驗採用機器學習(ML)設計自動評估的算法模型,結合自主研發的VR語言訓練模塊,從任務執行中獲取行為和生理信息。 通過機器學習分析患者在各種語言任務訓練中的表現和情況。 研究結果將從統計分析和機器學習兩個方面進行討論。在統計分析中,我們將對正常個體和失語症患者之間的多模態生理和遊戲任務特徵進行Mann-Whitney U檢驗,與正常個體相比顯示出許多顯著差異(p < 0.05)。 在機器學習方面,評估結果表現良好,所有模型都達到了80%以上的準確率。
摘要(英) Aphasia is a disease that can seriously affect the language abilities of patients. The primary cause is usually stroke, but it can also be caused by other factors such as brain trauma, tumors, and degeneration. The most common clinical manifestations in patients include difficulty finding words, leading to speech errors, substituting target words with other words, and difficulties with auditory comprehension, reading, and writing.Common diagnostic methods for aphasia include clinical scales and non-invasive brain stimulation, such as repetitive transcranial magnetic stimulation (rTMS), combined with intensive language training. The former method is more subjective and requires professional evaluation from a speech therapist, while the latter is more expensive. Therefore, an effective and objective diagnostic method is crucial for language therapy.This study proposes an automated method for evaluating aphasia. In this experiment, machine learning (ML) is used to design an algorithm model for automatic assessment, combining self-developed VR language training modules to obtain behavioral and physiological information from task execution. The performance and situations of patients in various language task training are analyzed through machine learning. The research results will be discussed from two aspects: statistical analysis and machine learning.In the statistical analysis, we will conduct a Mann-Whitney U test on the multimodal physiological and game task features between normal individuals and aphasia patients, showing many significant differences compared to normal individuals (p < 0.05). In the machine learning aspect, the evaluation results show good performance, with all models achieving over 80% accuracy.
關鍵字(中) ★ 失語症
★ 語言治療
★ 數位治療
★ 人工智慧
★ 虛擬實境
關鍵字(英) ★ Aphasia
★ Language Therapy
★ Digital Therapy
★ Artificial Intelligence
★ Virtual Reality
論文目次 Abstract -xi
致謝 - xiii
目錄 - xv
圖目錄 - xvii
表目錄 - xix
使用符號與定義 - xxi

一. Introduction - 1
二. Related Work - 7
三. Methods - 11
四. result - 29
五. Discussion - 39
六. Conclusion and Future Works - 43

參考文獻 - 47
參考文獻 [1] Simm, W. A., Roberts, P. E., & Joyce, M. J. (2006). Dysarthric speech measures
for use in evidence-based speech therapy. Designing accessible technology. London:
Springer, 16, 155-164.
[2] Trapl, M., Eckhardt, R., Bosak, P., & Brainin, M. (2004). Early recognition of speech
and speech-associated disorders after acute stroke. Wiener Medizinische Wochen-
schrift (1946), 154(23-24), 571-576.
[3] Ali, M., Lyden, P., & Brady, M. (2015). Aphasia and dysarthria in acute stroke:
recovery and functional outcome. International journal of stroke, 10(3), 400-406.
[4] Flowers, H. L., Silver, F. L., Fang, J., Rochon, E., & Martino, R. (2013). The
incidence, co-occurrence, and predictors of dysphagia, dysarthria, and aphasia after
first-ever acute ischemic stroke. Journal of communication disorders, 46(3), 238-248.
[5] National Aphasia Association. ”About Aphasia.” National Aphasia Association, 2021,
https://www.aphasia.org/aphasia-definitions/.
[6] Wade, D. T., Hewer, R. L., David, R. M., & Enderby, P. M. (1986). Aphasia after
stroke: natural history and associated deficits. Journal of Neurology, Neurosurgery
& Psychiatry, 49(1), 11-16.
[7] Clark, D. G., & Cummings, J. L. (2003). Aphasia. In Neurological disorders (pp.
265-275). Academic Press.
[8] Torres, J., Drebing, D., & Hamilton, R. (2013). TMS and tDCS in post-stroke apha-
sia: Integrating novel treatment approaches with mechanisms of plasticity. Restora-
tive Neurology and Neuroscience, 31(4), 501-515.
[9] Davidson, B., Howe, T., Worrall, L., Hickson, L., & Togher, L. (2008). Social par-
ticipation for older people with aphasia: The impact of communication disability on
friendships. Topics in stroke rehabilitation, 15(4), 325-340.
[10] Bakas, T., Kroenke, K., Plue, L. D., Perkins, S. M., & Williams, L. S. (2006).
Outcomes among family caregivers of aphasic versus nonaphasic stroke survivors.
Rehabilitation Nursing, 31(1), 33-42.
[11] Dickson, S., Barbour, R. S., Brady, M., Clark, A. M., & Paton, G. (2008). Patients’
experiences of disruptions associated with post‐stroke dysarthria. International Jour-
nal of Language & Communication Disorders, 43(2), 135-153.
[12] Mitchell, C., Gittins, M., Tyson, S., Vail, A., Conroy, P., Paley, L., & Bowen, A.
(2021). Prevalence of aphasia and dysarthria among inpatient stroke survivors: de-
scribing the population, therapy provision and outcomes on discharge. Aphasiology,
35(7), 950-960.
[13] C. -C. Chen, E. H. -K. Wu, Y. -Q. Chen, H. -J. Tsai, C. -R. Chung and S. -C.
Yeh, ”Neuronal Correlates of Task Irrelevant Distractions Enhance the Detection
of Attention Deficit/Hyperactivity Disorder,” in IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, vol. 31, pp. 1302-1310, 2023, doi: 10.1109/
TNSRE.2023.3241649.
[14] S. -H. Lee, J. Cui, L. Liu, M. -C. Su, L. Zheng and S. -C. Yeh, ”An Evidence-Based
Intelligent Method for Upper-Limb Motor Assessment via a VR Training System on
Stroke Rehabilitation,” in IEEE Access, vol. 9, pp. 65871-65881, 2021, doi: 10.1109/
ACCESS.2021.3075778.
[15] C. Chih-Hsuan, C. -R. Chung, H. -Y. Yang, S. -C. Yeh, E. H. -K. Wu and H. -J.
Ting, ”Virtual Reality-Based Supermarket for Intellectual Disability Classification,
Diagnostics and Assessment,” in IEEE Transactions on Learning Technologies, doi:
10.1109/TLT.2023.3261314.
[16] C. -R. Chung, M. -C. Su, S. -H. Lee, E. H. -K. Wu, L. -H. Tang and S. -C. Yeh, ”An
Intelligent Motor Assessment Method Utilizing a Bi-Lateral Virtual-Reality Task
for Stroke Rehabilitation on Upper Extremity,” in IEEE Journal of Translational
Engineering in Health and Medicine, vol. 10, pp. 1-11, 2022, Art no. 2100811, doi:
10.1109/JTEHM.2022.3213348.
[17] Galletta, E. E., & Barrett, A. M. (2014). Impairment and functional interventions
for aphasia: having it all. Current physical medicine and rehabilitation reports, 2,
114-120.
[18] Doogan, C., Dignam, J., Copland, D., & Leff, A. (2018). Aphasia recovery: When,
how and who to treat?. Current neurology and neuroscience reports, 18, 1-7.
[19] Kiran, S., & Thompson, C. K. (2019). Neuroplasticity of language networks in apha-
sia: Advances, updates, and future challenges. Frontiers in Neurology, 10, 295.
[20] Y. P. Rybarczyk and M. J. Gonçalves, ”WebLisling: A Web-based Therapeutic
Platform for the Rehabilitation of Aphasic Patients,” in IEEE Latin America Trans-
actions, vol. 14, no. 8, pp. 3921-3927, Aug. 2016, doi: 10.1109/TLA.2016.7786381.
[21] J. Pereira, M. de Melo, N. Franco, F. Rodrigues, A. Coelho and R. Fidalgo, ”Us-
ing Assistive Robotics for Aphasia Rehabilitation,” 2019 Latin American Robotics
Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Work-
shop on Robotics in Education (WRE), Rio Grande, Brazil, 2019, pp. 387-392, doi:
10.1109/LARS-SBR-WRE48964.2019.00074.
[22] Braddom, R. L. (2010). Physical medicine and rehabilitation e-book. Elsevier Health
Sciences.
[23] Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimu-
lation of human motor cortex. The Lancet, 325(8437), 1106-1107.
[24] Walsh, V. and M. Rushworth, A primer of magnetic stimulation as a tool for neu-
ropsychology. Neuropsychologia, 1999. 37(2): p.125-35.
[25] Pascual-Leone, A., Tormos, J. M., Keenan, J., Tarazona, F., Cañete, C., & Catalá,
M. D. (1998). Study and modulation of human cortical excitability with transcranial
magnetic stimulation. Journal of clinical neurophysiology, 15(4), 333-343.
[26] Barwood, C. H., Murdoch, B. E., Whelan, B. M., Lloyd, D., Riek, S., O’Sullivan,
J. D., ... & Wong, A. (2012). Improved receptive and expressive language abilities in
nonfluent aphasic stroke patients after application of rTMS: an open protocol case
series. Brain Stimulation, 5(3), 274-286.
[27] Blumberger, D. M., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Gia-
cobbe, P., ... & Downar, J. (2018). Effectiveness of theta burst versus high-frequency
repetitive transcranial magnetic stimulation in patients with depression (THREE-D):
a randomised non-inferiority trial. The Lancet, 391(10131), 1683-1692.
[28] Ij, H. (2018). Statistics versus machine learning. Nat Methods, 15(4), 233.
[29] Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable machine
learning for scientific insights and discoveries. Ieee Access, 8, 42200-42216.
[30] Tsai, P. Y., Wang, C. P., Ko, J. S., Chung, Y. M., Chang, Y. W., & Wang, J. X.
(2014). The persistent and broadly modulating effect of inhibitory rTMS in nonfluent
aphasic patients: a sham-controlled, double-blind study. Neurorehabilitation and
neural repair, 28(8), 779-787.
[31] Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning
algorithm validation with a limited sample size. PloS one, 14(11), e0224365.
指導教授 葉士青(Shih-Ching Yeh) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明