參考文獻 |
[1] J. SHUTTLEWORTH and S. International. "SAE Standards News: J3016 automated-driving graphic update." https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic.
[2] W.-. 地圖型行車影像分享平台. "WoWtchout - 地圖型行車影像分享平台." https://www.youtube.com/@WoWtchout.
[3] A. Bochkovskiy, C.-Y. Wang, and Y. Hong, "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv pre-print server, 2020-04-23 2020, doi: None, arxiv:2004.10934.
[4] C.-Y. Wang, A. Bochkovskiy, and Y. Hong, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," arXiv pre-print server, 2022-07-06 2022, doi: None, arxiv:2207.02696.
[5] W. Liu et al., "SSD: Single Shot MultiBox Detector," Springer International Publishing, 2016, pp. 21-37.
[6] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," arXiv pre-print server, 2016-01-06 2016, doi: None, arxiv:1506.01497.
[7] K. He, G. Gkioxari, P. Doll′ar, and R. Girshick, "Mask R-CNN," arXiv pre-print server, 2018-01-24 2018, doi: None, arxiv:1703.06870.
[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," arXiv pre-print server, 2016-05-09 2016, doi: None, arxiv:1506.02640.
[9] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," arXiv pre-print server, 2016-12-25 2016, doi: None, arxiv:1612.08242.
[10] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," arXiv pre-print server, 2018-04-08 2018, doi: None, arxiv:1804.02767.
[11] G. Jocher. "yolov5." https://github.com/ultralytics/yolov5.
[12] C. Li et al., "YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications," arXiv pre-print server, 2022-09-07 2022, doi: None, arxiv:2209.02976.
[13] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, "RepVGG: Making VGG-style ConvNets Great Again," arXiv pre-print server, 2021-01-11 2021, doi: None, arxiv:2101.03697.
[14] K. Weng, X. Chu, X. Xu, J. Huang, and X. Wei, "EfficientRep:An Efficient Repvgg-style ConvNets with Hardware-aware Neural Network Design," arXiv pre-print server, 2023-02-01 2023, doi: None, arxiv:2302.00386.
[15] D. Wu et al., "Detection of Camellia oleifera Fruit in Complex Scenes by Using YOLOv7 and Data Augmentation," Applied Sciences, vol. 12, no. 22, p. 11318, 2022, doi: 10.3390/app122211318.
[16] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv pre-print server, 2015-04-10 2015, doi: None, arxiv:1409.1556.
[17] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv pre-print server, 2015-12-10 2015, doi: None, arxiv:1512.03385.
[18] G. Huang, Z. Liu, Laurens, and Kilian, "Densely Connected Convolutional Networks," arXiv pre-print server, 2018-01-28 2018, doi: None, arxiv:1608.06993.
[19] glenn-jocher. "ultralytics." https://github.com/ultralytics/ultralytics.
[20] T.-Y. Lin, P. Doll′ar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature Pyramid Networks for Object Detection," arXiv pre-print server, 2017-04-19 2017, doi: None, arxiv:1612.03144.
[21] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path Aggregation Network for Instance Segmentation," arXiv pre-print server, 2018-09-18 2018, doi: None, arxiv:1803.01534.
[22] P.-Y. Chen, M.-C. Chang, J.-W. Hsieh, and Y.-S. Chen, "Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection," IEEE Transactions on Image Processing, vol. 30, pp. 9099-9111, 2021, doi: 10.1109/tip.2021.3118953.
[23] A. Vaswani et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017.
[24] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, "End-to-End Object Detection with Transformers," arXiv pre-print server, 2020-05-28 2020, doi: None, arxiv:2005.12872.
[25] Y. Lee, J.-w. Hwang, S. Lee, Y. Bae, and J. Park, "An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection," arXiv pre-print server, 2019-04-22 2019, doi: None, arxiv:1904.09730v1.
[26] A. Dosovitskiy et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," arXiv pre-print server, 2020-10-22 2020, doi: None, arxiv:2010.11929.
[27] Q. Hou, D. Zhou, and J. Feng, "Coordinate Attention for Efficient Mobile Network Design," arXiv pre-print server, 2021-03-04 2021, doi: None, arxiv:2103.02907.
[28] J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," 2018: IEEE, doi: 10.1109/cvpr.2018.00745. [Online]. Available: https://dx.doi.org/10.1109/cvpr.2018.00745
[29] S. Woo, J. Park, J.-Y. Lee, and In, "CBAM: Convolutional Block Attention Module," arXiv pre-print server, 2018-07-18 2018, doi: None, arxiv:1807.06521.
[30] T. Aksoy and U. Halici, "Analysis of visual reasoning on one-stage object detection," arXiv preprint arXiv:2202.13115, 2022.
[31] Diederik and J. Ba, "Adam: A Method for Stochastic Optimization," arXiv pre-print server, 2017-01-30 2017, doi: None, arxiv:1412.6980.
[32] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv pre-print server, 2017-06-15 2017, doi: None, arxiv:1609.04747.
[33] K. Behrendt, L. Novak, and R. Botros, "A deep learning approach to traffic lights: Detection, tracking, and classification," in 2017 IEEE International Conference on Robotics and Automation (ICRA), 29 May-3 June 2017 2017, pp. 1370-1377, doi: 10.1109/ICRA.2017.7989163.
[34] K. Behrendt and L. Novak. "Bosch Small Traffic Lights Dataset." https://hci.iwr.uni-heidelberg.de/content/bosch-small-traffic-lights-dataset.
[35] karstenBehrendt. "bosch-ros-pkg/bstld." https://github.com/bosch-ros-pkg/bstld.
[36] Alex, O. Andrienko, A. Harakeh, and Steven, "A Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light Detection," arXiv pre-print server, 2018-09-13 2018, doi: None, arxiv:1806.07987. |