博碩士論文 110522085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.129.250.3
姓名 陳郁傑(Yu-Chieh Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於勝算比尋找影響在學經歷與畢業走向之未考慮因素
(Exploring Out-Of-Context Factors Which Affect Learning Portfolio and Prospects After Graduation Based on Odds Ratio)
相關論文
★ 應用自組織映射圖網路及倒傳遞網路於探勘通信資料庫之潛在用戶★ 基於社群網路特徵之企業電子郵件分類
★ 行動網路用戶時序行為分析★ 社群網路中多階層影響力傳播探勘之研究
★ 以點對點技術為基礎之整合性資訊管理 及分析系統★ 在分散式雲端平台上對不同巨量天文應用之資料區域性適用策略研究
★ 應用資料倉儲技術探索點對點網路環境知識之研究★ 從交易資料庫中以自我推導方式探勘具有多層次FP-tree
★ 建構儲存體容量被動遷徙政策於生命週期管理系統之研究★ 應用服務探勘於發現複合服務之研究
★ 利用權重字尾樹中頻繁事件序改善入侵偵測系統★ 有效率的處理在資料倉儲上連續的聚合查詢
★ 入侵偵測系統:使用以函數為基礎的系統呼叫序列★ 有效率的在資料方體上進行多維度及多層次的關聯規則探勘
★ 在網路學習上的社群關聯及權重之課程建議★ 在社群網路服務中找出不活躍的使用者
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年台灣各大專院校相繼成立校務研究辦公室,致力於探討學生議題及
評估學校政策,透過科學化的決策支援系統輔助學校決策者改善學校經營方針與規劃未來發展,旨在促進學校和教育政策的發展,提高學校的教學品質、學生學習成果和學校整體運作效率。本校校務研究單位目前已蒐集、整理各單位的資料並進行整合,校務倉儲資料庫提供的實證資料涉及範疇極其多樣,教務、學務、總務以及人事等皆包含在內。
在大數據分析的浪潮中,各個機構將面臨數量龐大的可分析議題,然而,
對於選定何種類型資料針對特定議題進行分析仍然相當困難,有時候,分析結果可能出現錯誤或不如預期的情況,這些問題往往源於自身機構內資料面向的不完整性,由於資料種類的不足,可能導致錯誤的分析結果,因此,必須納入額外資料,重新進行分析,以獲得所期望的結果。本研究旨在探討在已有資料集中是否需要納入額外資料來進行分析,比較納入額外資料前後的準因果規則集,整理出三種情況進行評估:準因果規則強弱變化、更特定準因果規則以及更直接準因果規則,提供分析者一個以因果勝算比的角度考量是否應該納入額外資料的方法。本研究將以校務資料為例,以學生為主體,進行因果勝算比探勘,討論「給予學生經濟協助」與「學生擴大交友圈」兩大面向,在探究畢業走向相關議題時是否值得考慮進去。
摘要(英) In recent years, many universities in Taiwan have established offices of institutional research one after another, dedicated to exploring student issues and
evaluating school’s policies. These offices assist school administration in improving school management and future development planning by scientific decision support
systems. The goal is to promote the development of schools and educational policies, enhance teaching quality, student learning outcomes and school operational efficiency.
In the era of big data, institutions would face plenty of issues. However, it still difficult to determine which types of data should be used in specific issue analysis.
Occasionally, analysis results may be wrong or unexpected. This situation often happen when the dimension of data within institution itself is not widely enough.
Insufficient data types can lead to inaccurate analysis results, must incorporate additional data for reanalysis to obtain expected outcomes. This research aims to
explore the need for incorporating additional data into existing datasets for analysis. We compare the odds ratio before and after incorporating additional data, evaluating
three scenarios: changes in the strength of quasi causal rule, more specific quasi causal rules and core direct quasi causal rules. This provide analysts with a method to
consider whether additional data should be incorporated from a causal odds ratio perspective. This research takes student data as an example, implements causal odds
ratio mining with student data and discusses whether “providing financial assistance to student” and “expanding student’s social network” should be considered when
exploring issues related to prospects after graduation.
關鍵字(中) ★ 校務研究
★ 關聯規則探勘
★ 因果勝算比探勘
★ 未考慮因素
關鍵字(英)
論文目次 摘要 ii
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
二、 文獻探討 4
2-1 校務研究 4
2-2 關聯規則探勘(Association Rule Mining) 4
2-2-1 頻繁樣式探勘(Frequent Pattern Mining) 5
2-2-2 支持度(Support) 5
2-2-3 信賴度(Confidence) 6
2-3 因果勝算比探勘(Causal Odds Ratio Mining) 6
2-4 隊列研究(Cohort Study)[12] 7
2-5 勝算比(Odds Ratio, OR) 8
三、 研究方法 10
3-1 系統流程與架構 10
3-2 資料前處理 10
3-3 準因果規則定義與驗證 11
3-3-1 準因果規則候選 11
3-3-2 準因果規則驗證 11
3-4 分析擴增前後因果勝算比差異 13
3-4-1 已有準因果規則之強弱變化 13
3-4-2 更特定的準因果規則 14
3-4-3 更直接的準因果規則 15
四、 實驗 18
4-1 實驗規格與環境 18
4-2 實驗資料集 18
4-3 準因果規則比對與分析 18
4-3-1 擴增社團維度 18
4-3-2 擴增校內工讀維度 20
4-3-3 擴增獎學金維度 22
4-4 規則、情況(Case)數目與運算時間 23
4-5 隨機抽樣 24
4-5-1 100筆 24
4-5-2 200筆 25
4-5-3 400筆 25
4-6 隨機抽樣耗時與驗證 25
五、 結論與討論 27
六、 參考文獻 29
參考文獻 [1] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.
[2] J. L. &. M. J. R. Saupe. “The nature and role of institutional research: Memo to a college or university.” Tallahassee, FL: Association for Institutional Research. 1970.
[3] J. L. Saupe. “The functions of institutional research.”, 2nd Edition, Tallahassece,FL: Association for Institutional Research. 1990.
[4] 李政翰:〈我國推動大學校務研究之策略〉,2015年9月,取自https://ods.tmu.edu.tw/upload_file/tmudc/811/15875498111.pdf
[5] 臺灣校務研究專業協會,取自https://tair.tw/
[6] J. Han and M. Kamber. Data Mining: Concepts and Techniques. 2000.
[7] R. Agrawal, T. Imielinski, and A. Swami. “Mining association rules between sets of items in large databases.” SIGMOD, Vol 22, June 1993, pp. 207–216.
[8] R. Agrawal and R. Srikant. “Fast algorithms for mining association rules.” VLDB’94, September 1994, pp. 487-499.
[9] J. Han, J. Pei and Y. Yin. 2000. “Mining Frequent Patterns Without Candidate Generation.” SIGMOD, Vol 29, June 2000, pp. 1–12.
[10] F. Yusuf, S. Cheng, S. Ganapati and G. Narasimhan. “Causal Inference Methods and their Challenges: The Case of 311 Data.” DG.O’21, June 2021, pp. 49-59.
[11] E Kummerfeld, J Ramsey. “Causal Clustering for 1-Factor Measurement Models.” KDD’16, August 2016, pp. 1655–1664.
[12] J. Li, et al. “From observational studies to causal rule mining.” TIST, Vol 7, November 2015, pp 1-27.
[13] J. W. Song and K. C. Chung. “Observational studies: Cohort and case-control studies. ” Plastic and Reconstructive Surgery, December 2010, pp. 2234–2242.
[14] A.M Euser, et al. “Cohort studies: prospective versus retrospective.” Nephron Clinical Practice, 2009, pp. c214-c217.
[15] J. M. Bland and D. G. Altman. “The odds ratio.” BMJ, Vol 320, May 2000, pp. 1468.
[16] 行政院主計總處,取自https://earnings.dgbas.gov.tw/experience_sub_01.aspx
[17] R. W. Floyd. “Algorithm 97: Shortest Path.” Communications of the ACM, Vol 5, June 1962, pp. 345.
[18] R. Sedgewick. Algorithms in C, Part 5: Graph Algorithms. 2001.
[19] P. O. Johnson and J. Neyman. “Tests of certain linear hypotheses and their application to some educational problems.” Statistical Research Memoirs, 1936, pp. 57-93.
[20] Tegan George. “What Is a Cohort Study? | Definition & Examples.” February 2023. From https://www.scribbr.com/methodology/cohort-study/
指導教授 蔡孟峰 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明