博碩士論文 110523025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.147.6.122
姓名 陳茗薇(Ming-Wei Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 混合波束成形的波束分配演算法 用於下行鏈路 MIMO LEO 衛星通訊
(Beam Allocation Algorithms with Hybrid Beamforming for Downlink MIMO LEO Satellite Communications)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-5以後開放)
摘要(中) 在第六代行動通訊( 6G ),行動通訊與各種近端傳輸技術、低軌道衛星通訊系統以及包括毫米波在內等創新通信技術等將融合為一體,逐步實現不管是何時何地皆可以無縫式接收及覆蓋。然而,低軌道衛星通訊系統在第六代(6G)行動通訊中是一項新興的候選技術。
本文中,我們提出大規模多輸入多輸出(MIMO)低地球軌道(LEO)衛星通訊(SATCOM)基於全連接架構的混合波束成形。假設已知通道狀態資訊(CSI),我們可以透過已知的通道狀態資訊,設計混合發射器及混合接收器。先前有學者針對類比端進行波束設計,建立編碼簿,以波束形成增益 (Beamforming Gain) 達到最大為出發點,配置波束,指向訊號方向。前面學者所提的配置波束方法,複雜度較高。本文主要提出低複雜波束配置演算法,以達到最高傳送資料速率為出發點,配置波束。最後,選擇接下來要服務的使用者,是以SINR的大小做挑選,以確保本文提出的演算法選出的使用者與前面學者所提出之結果不會相差甚遠。這代表接下來須服務的使用者是有良好的通道,可以帶來較佳的通訊環境。總結,在本文所提出的演算法,與先前學者所提出的方法挑選接下來要服務的使用者的結果並沒有相差甚遠,且降低複雜度。
摘要(英) The sixth generation of mobile communications (6G) will integrate mobile communications with Near Field Communication (NFC), the Low Earth Orbit (LEO) satellite communications systems (SATCOM), and innovative communications technologies including millimeter waves, and gradually achieve seamless reception and coverage no matter when and where. LEO satellite communication systems are increasingly considered as a potential technology for the sixth generation (6G) of mobile communications.
In the paper, we introduced a hybrid beamforming approach based on a fully connected architecture for massive Multiple-Input Multiple-Output (MIMO) Low Earth Orbit (LEO) satellite communications. Assuming that the channel state information (CSI) is known, we can design hybrid precoders and combiners based on the known channel status information. Previously, some scholars conducted analog beamformer design, making a beamforming codebook, based on the maximum beamforming gain to allocate analog beamformer and point the signal direction. The beam allocation algorithm proposed by previous scholars, but the complexity is high. This article mainly proposed a low-complexity beam allocation algorithm, based on achieving the highest transmission data rate, proposing an algorithm to allocate beamformer, and finally selecting the users to be served next based on the Signal to Interference plus Noise Ratio (SINR), to ensure that there will not a big gap between our algorithm and previous algorithm of results. This means that the users to be served next have a better channel, which can bring about a better communication environment. The proposed algorithm is not far different from the algorithm proposed by scholars in selecting the users to be served next, it reduces the complexity.
關鍵字(中) ★ 編碼簿
★ 波束配置
★ 衛星通訊系統
★ 大規模多輸入多輸出
★ 混合波束成形
★ 多使用者
關鍵字(英) ★ Codebook
★ Beam allocation
★ Satellite Communication
★ Massive MIMO
★ Hybrid Beamforming
★ Multi-user
論文目次 Content
論文摘要 ......ii
Abstract ......iv
致謝 .....vi
Contents ......vii
List of Figures ......viii
List of Tables ......ix
Chapter 1. Introduction ......1
1.1. Satellite Communication ......1
1.2. Massive MIMO ......3
1.3. Structure of Hybrid Beamforming ......4
1.4 Beamforming Codebook ......5
1.5. Contribution ......6
1.6. Organization ......7
1.7. Abbreviations ......8
1.8. Notation ......9
Chapter 2. System Model ......11
2.1. Hybrid Precoding and Combining ......11
2.2. Beamforming Codebook Structure ......13
2.3. Channel Model ......16
Chapter 3. Proposed Hybrid Beamforming ......21
2.3.1 Codebook-based Analog beamforming Design ......22
2.3.2 Coordinated Block Diagonalization for Digital Beamforming ...... 27
Chapter 4. Low-complexity beam allocation (LBA) Algorithm and User Selection ......32
Chapter 5. Computational Complexity and Simulation Results ......41
Chapter 6. Conclusion ......50
References ......51

List of Figures
Figure 1. Satellite communication system architecture ......2
Figure 2. Comparison of traditional MIMO(Left) and Massive MIMO(Right). ......3
Figure 3. Comparison of fully digital beamforming structure (Left) and hybrid beamforming structure (Right). ......5
Figure 4. Mapping strategies for analog precoder Fully-connected (Left) Partially-connected (Right). ......5
Figure 5. Illustration of downlink u-th user satellite communication systems (SATCOM) system with hybrid beamforming architectures. ......11
Figure 6. The beam allocation in the LEO satellite massive MIMO communication system. ......21
Figure 7. Algorithm of the brute-force search. ......23
Figure 8. Comparing the channel capacity (bits/s/Hz) of Random beam allocation and Brute-force search. ......45
Figure 9. Comparing the channel capacity (bits/s/Hz) of three different combinations of the desired beam patterns. ......45
Figure 10. Selected users are identical probability between two algorithms ......47
Figure 11. Channel Capacity (bits/s/Hz) comparing between two algorithms. ......48
Figure 12. Channel Capacity (bits/s/Hz) comparing between Low-complexity beam allocation algorithms and three different combinations of the desired beam patterns. ......48

List of Tables
Table 1. List of abbreviations used in the thesis. ......8
Table 2. List of Parameters. ......9
Table 3. Table of Complexity. ......44
參考文獻 [1] Y. Liu, C. Li, J. Li and L. Feng, "Robust Energy-Efficient Hybrid Beamforming Design for Massive MIMO LEO Satellite Communication Systems," in IEEE Access, vol. 10, pp. 63085-63099, 2022, doi: 10.1109/ACCESS.2022.3181178.
[2] Y. Zhang, A. Liu, P. Li and S. Jiang, "Deep Learning (DL)-Based Channel Prediction and Hybrid Beamforming for LEO Satellite Massive MIMO System," in IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23705-23715, 1 Dec.1, 2022, doi: 10.1109/JIOT.2022.3190412.
[3] L. You et al., "Hybrid Analog/Digital Precoding for Downlink Massive MIMO LEO Satellite Communications," in IEEE Transactions on Wireless Communications, vol. 21, no. 8, pp. 5962-5976, Aug. 2022, doi: 10.1109/TWC.2022.3144472.
[4] L. You, K. -X. Li, J. Wang, X. Gao, X. -G. Xia and B. Ottersten, "Massive MIMO Transmission for LEO Satellite Communications," in IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1851-1865, Aug. 2020, doi: 10.1109/JSAC.2020.3000803.
[5] D. Ma, X. Liu, X. Wang, J. Xiong and W. Li, "On the performance indexes of physical layer security for multi-beam satellite networks," 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 2015, pp. 1-6, doi: 10.1109/WCSP.2015.7341221.
[6] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin and R. Zhang, "An Overview of Massive MIMO: Benefits and Challenges," in IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, Oct. 2014.
[7] C. -X. Wang et al., "Cellular architecture and key technologies for 5G wireless communication networks," in IEEE Communications Magazine, vol. 52, no. 2, pp. 122-130, February 2014, doi: 10.1109/MCOM.2014.6736752.
[8] F. Rusek et al., "Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays," in IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, Jan. 2013.
[9] T. Peken, S. Adiga, R. Tandon and T. Bose, "Deep Learning for SVD and Hybrid Beamforming," in IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp. 6621-6642, Oct. 2020, doi: 10.1109/TWC.2020.3004386.
[10] M. Tajallifar, A. R. Sharafat and H. Yanikomeroglu, "QoS-Aware Hybrid Beamforming With Minimal Power in mmWave Massive MIMO Systems," in IEEE Access, vol. 9, pp. 164668-164680, 2021, doi: 10.1109/ACCESS.2021.3135003.
[11] M. Soleimani, R. C. Elliott, W. A. Krzymien, J. Melzer and P. Mousavi, "Hybrid beamforming and DFT-based channel estimation for millimeter wave MIMO systems," 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 2017, pp. 1-7, doi: 10.1109/PIMRC.2017.8292276.
[12] J. Wang et al., "Beamforming Codebook Design and Performance Evaluation for 60GHz Wideband WPANs," 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 2009, pp. 1-6, doi: 10.1109/VETECF.2009.5379063.
[13] F.G. Javier Vía and I. Santamaría, “Beamforming design for simplified analog antenna combining architectures,” IEEE Trans. on Vehicular Technology, vol. 60, no. 5, pp. 2373–2378, June 2011.
[14] L. Zhou and Y. Ohashi, "Efficient codebook-based MIMO beamforming for millimeter-wave WLANs," 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), Sydney, NSW, Australia, 2012, pp. 1885-1889, doi: 10.1109/PIMRC.2012.6362659.
[15] L. You, K. -X. Li, J. Wang, X. Gao, X. -G. Xia and B. Ottersten, "Massive MIMO Transmission for LEO Satellite Communications," in IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1851-1865, Aug. 2020, doi: 10.1109/JSAC.2020.3000803.
[16] L. You et al., "Massive MIMO Hybrid Precoding for LEO Satellite Communications With Twin-Resolution Phase Shifters and Nonlinear Power Amplifiers," in IEEE Transactions on Communications, vol. 70, no. 8, pp. 5543-5557, Aug. 2022, doi: 10.1109/TCOMM.2022.3182757.
[17] P. -D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis and R. De Gaudenzi, "MIMO over Satellite: A Review," in IEEE Communications Surveys & Tutorials, vol. 13, no. 1, pp. 27-51, First Quarter 2011, doi: 10.1109/SURV.2011.033110.00072.
[18] W. Ni and X. Dong, "Hybrid Block Diagonalization for Massive Multiuser MIMO Systems," in IEEE Transactions on Communications, vol. 64, no. 1, pp. 201-211, Jan. 2016, doi: 10.1109/TCOMM.2015.2502954.
[19] S. Malla and G. Abreu, "Transmit power minimization in multi-user millimeter wave systems," 2016 International Symposium on Wireless Communication Systems (ISWCS), Poznan, Poland, 2016, pp. 409-413, doi: 10.1109/ISWCS.2016.7600938.
[20] "IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific requirements-- Part 15.3: Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension," in IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003) , vol., no., pp.1-200, 12 Oct. 2009, doi: 10.1109/IEEESTD.2009.5284444.
[21] J. Wang et al., "Beamforming Codebook Design and Performance Evaluation for 60GHz Wideband WPANs," 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 2009, pp. 1-6, doi: 10.1109/VETECF.2009.5379063.
[22] K. -X. Li et al., "Downlink Transmit Design for Massive MIMO LEO Satellite Communications," in IEEE Transactions on Communications, vol. 70, no. 2, pp. 1014-1028, Feb. 2022, doi: 10.1109/TCOMM.2021.3131573.
[23] C. A. Hofmann, R. T. Schwarz and A. Knopp, "Multisatellite UHF MIMO Channel Measurements," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2481-2484, 2017, doi: 10.1109/LAWP.2017.2725438.
[24] S. Li and W. Meng, "Staring Beamforming Method for LEO Satellite Based on Angle Increment Prediction," 2022 27th Asia Pacific Conference on Communications (APCC), Jeju Island, Korea, Republic of, 2022, pp. 96-100, doi: 10.1109/APCC55198.2022.9943684.
[25] G. Hegde, C. Masouros and M. Pesavento, "Analog Beamformer Design for Interference Exploitation Based Hybrid Beamforming," 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 2018, pp. 109-113, doi: 10.1109/SAM.2018.8448852.
[26] J. Wang, H. Zhu, L. Dai, N. J. Gomes and J. Wang, "Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 8236-8248, Dec. 2016, doi: 10.1109/TWC.2016.2613517.
[27] Q. H. Spencer, A. L. Swindlehurst and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," in IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461-471, Feb. 2004, doi: 10.1109/TSP.2003.821107.
[28] M. Rahman, T. Walingo and F. Takawira, "Adaptive handover scheme for LEO satellite communication system," AFRICON 2015, Addis Ababa, Ethiopia, 2015, pp. 1-5, doi: 10.1109/AFRCON.2015.7332051.
[29] Y. Zou, W. Rave and G. Fettweis, "Analog beamsteering for flexible hybrid beamforming design in mmwave communications," 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 2016, pp. 94-99, doi: 10.1109/EuCNC.2016.7561012.
[30] M. M. Molu, P. Xiao, M. Khalily, K. Cumanan, L. Zhang and R. Tafazolli, "Low-Complexity and Robust Hybrid Beamforming Design for Multi-Antenna Communication Systems," in IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 1445-1459, March 2018, doi: 10.1109/TWC.2017.2778258.
[31] B. -Y. Chen, Y. -F. Chen and S. -M. Tseng, "Hybrid Beamforming and Data Stream Allocation Algorithms for Power Minimization in Multi-User Massive MIMO-OFDM Systems," in IEEE Access, vol. 10, pp. 101898-101912, 2022, doi: 10.1109/ACCESS.2022.3208704.
[32] Z. Xiao, T. He, P. Xia and X. -G. Xia, "Hierarchical Codebook Design for Beamforming Training in Millimeter-Wave Communication," in IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3380-3392, May 2016, doi: 10.1109/TWC.2016.2520930.
[33] A. Knopp, R. T. Schwarz, D. Ogermann, C. A. Hofmann and B. Lankl, "Satellite System Design Examples for Maximum MIMO Spectral Efficiency in LOS Channels," IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference, New Orleans, LA, USA, 2008, pp. 1-6, doi: 10.1109/GLOCOM.2008.ECP.554.
[34] X. Liu, K. Xu, F. Wu and J. Wu, "A beam-dominating frequency resource allocation and scheduling scheme for multi-beam satellite system," 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 2021, pp. 532-535, doi: 10.1109/ICPECA51329.2021.9362526.
[35] Palacios, Joan, Nuria González-Prelcic, Carlos Mosquera, Takayuki Shimizu and Chang-Heng Wang. “A Hybrid Beamforming Design for Massive MIMO LEO Satellite Communications.” Frontiers in Space Technologies (2021).
[36] A. Gründinger, M. Joham and W. Utschick, "Design of beamforming in the satellite downlink with static and mobile users," 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 2011, pp. 2091-2095, doi: 10.1109/ACSSC.2011.6190397.
[37] J. E. Barcelo-Llado, M. A. Vazquez-Castro, J. Lei and A. Hjorungnes, "Distributed Power and Carrier Allocation in Multibeam Satellite Uplink with Individual SINR Constraints," GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 2009, pp. 1-6, doi: 10.1109/GLOCOM.2009.5425593.
[38] R. Richter, I. Bergel, Y. Noam and E. Zehavi, "Downlink Cooperative MIMO in LEO Satellites," in IEEE Access, vol. 8, pp. 213866-213881, 2020, doi: 10.1109/ACCESS.2020.3039598.
[39] M. R. Dakkak, D. G. Riviello, A. Guidotti and A. Vanelli-Coralli, "Evaluation of MU-MIMO Digital Beamforming Algorithms in B5G/6G LEO Satellite Systems," 2022 11th Advanced Satellite Multimedia Systems Conference and the 17th Signal Processing for Space Communications Workshop (ASMS/SPSC), Graz, Austria, 2022, pp. 1-8, doi: 10.1109/ASMS/SPSC55670.2022.9914720.
[40] X. Qiang et al., "Hybrid A/D Precoding for Downlink Massive MIMO in LEO Satellite Communications," 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 2021, pp. 1-6, doi: 10.1109/ICCWorkshops50388.2021.9473680.
[41] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao and J. Shi, "Broadband LEO Satellite Communications: Architectures and Key Technologies," in IEEE Wireless Communications, vol. 26, no. 2, pp. 55-61, April 2019, doi: 10.1109/MWC.2019.1800299.
[42] Liu Y, Li C, Li J, Feng L. Joint User Scheduling and Hybrid Beamforming Design for Massive MIMO LEO Satellite Multigroup Multicast Communication Systems. Sensors. 2022; 22(18):6858.
[43] C. Qian, S. Zhang and W. Zhou, "Traffic-based dynamic beam coverage adjustment in satellite mobile communication," 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 2014, pp. 1-6, doi: 10.1109/WCSP.2014.6992014.
[44] Y. Zhang, J. Du, Y. Chen, M. Han and X. Li, "Optimal Hybrid Beamforming Design for Millimeter-Wave Massive Multi-User MIMO Relay Systems," in IEEE Access, vol. 7, pp. 157212-157225, 2019, doi: 10.1109/ACCESS.2019.2949786.
[45] Y. Lu, C. Cheng, J. Yang and G. Gui, "Improved Hybrid Precoding Scheme for mmWave Large-Scale MIMO Systems," in IEEE Access, vol. 7, pp. 12027-12034, 2019, doi: 10.1109/ACCESS.2019.2892136.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2024-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明