博碩士論文 110524018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.217.2.54
姓名 陳宣文(Hsuan-Wen Chen)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 機械戰馬:連桿仿生機器人之開發及教學設計與運算思維表現評估
(The Mechanical Warhorse: Development of Linkage Bionic Robots and Instructional Design and Evaluation of Computational Thinking)
相關論文
★ 遊戲式學習增進印尼國小兒童運算思維 之成效研究★ 科技輔助版圖遊戲增進印尼兒童英語詞彙學習 之成效研究
★ 運用均一教育平台於國中資源班學生數學學習之研究★ <亞米大陷阱>數位學習營養教育遊戲對臺灣飲食營養價值學習成效之探討
★ 台灣地形遊戲教育中的沙盒擴增實境系統設計與評估★ 線上議題探究系統之探究能力分析
★ 線上議題遊戲系統之遊戲行為與互動歷程探討★ 複合式領地桌遊之學習者人格特質與歷史思維分析
★ 探討成人玩家於議題式遊戲之行為與人格特質的關係★ 大航海高峰會遊戲中的玩家衝突策略與人 格分析
★ 探討成人玩家於大航海高峰會遊戲中情緒與人格的關係★ 線上社群溝通課程對學員互動關係與團隊發展歷程研究
★ 情境議題式策略遊戲平台的開發與評估★ 科技融入幼兒生命教育繪本之學習、興趣、歷程與成效
★ 線上歷史探究系統對中學生歷史思維與探究學習成效分析★ 文化美感教育桌遊<金色絲路>對小學生 美感鑑賞素養與文化認知之學習分析影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 本研究設計了一個與仿生機器人相關的專題式學習活動,名為「機械戰馬」,並觀察了學習者的學習成效和運算思維表現。在這個充滿科技的時代,STEM教育已經被納入世界各地許多中學的正規教育,運算思維作為一種重要的跨學科能力,在培養現代社會中的問題解決和創新能力方面具有重要的促進作用。本研究基於專題式學習的要點設計一套教學流程,透過實際動手組裝、自主研究出一款屬於自己的連桿仿生機器人。以質性分析為主,分析學習者的運算思維表現以及連桿仿生機器人的組裝表現;並以量化分析為輔,分析學習者的學習成效以及對整體活動的回饋。
「運算思維表現」方面上,學習者已經掌握抽象化、分解和演算法的技能。然而,在評估和歸納技能的表現上還有待提升,仍需教師給予更多協助及範例教學。「組裝表現」方面上,大部分學習者都能夠有效的利用有限的零件,應用所學的連桿機構知識成功組裝出一台仿生機器人。「學習成效」方面上,學習者在總體分數上有非常顯著(p=.000)的進步。在「滿意度」方面,學習者對整體課程內容的難易度和豐富度給予了高度評價,並且認為他們的學習態度和學習動機是正向的。
這項研究為STEM課程提供了一個模型,可作為未來教學設計的參考,並提供了一個適用於機器人和連桿機構教育的教材,使學習者能夠進行實際操作、解決問題,並應用所學,成為能夠靈活運用運算思維的優秀人才。
摘要(英) This study designed a project-based learning activity related to bionic robots called "Mechanical Warhorse". In this technology-driven era, STEM education has been incorporated into formal education in many secondary schools around the world. Computational thinking, as an important interdisciplinary skill, plays a crucial role in fostering problem-solving and innovation abilities. Based on the key points of project-based learning, this study developed an instructional design that involved hands-on assembly to create a customized linkage bionic robot. Through qualitative analysis, the computational thinking performance of the learners and the assembly performance of the linkage bionic robot were analyzed. Quantitative analysis was also conducted to assess the learners′ learning outcomes and feedback on the overall activity.
Regarding "computational thinking performance," the learners acquired skills in abstraction, decomposition, and algorithms. However, there is room for improvement in evaluation and generalization skills. In terms of "assembly performance," most learners were able to effectively utilize limited parts and successfully assemble a bionic robot. In terms of "learning outcomes," the learners showed significant improvement in their overall scores (p=.000). In terms of "satisfaction," the learners highly rated the difficulty and richness of the overall course content and perceived their learning attitudes and motivation as positive.
This study provides a model for STEM curriculum, serving as a reference for future instructional design. It also offers educational materials suitable for robot and linkage mechanism education, allowing learners to engage in practical operations, problem-solving, and the application of their knowledge, thus becoming talented individuals who can flexibly apply computational thinking.
關鍵字(中) ★ 連桿機構
★ 專題式學習
★ 運算思維
★ 仿生機器人
★ STEM
★ 3D列印
關鍵字(英) ★ Linkage Mechanism
★ Project-Based Learning
★ Computation Thinking
★ Bionic Robot
★ STEM
★ 3D Printing
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究問題 3
二、 文獻探討 4
2-1 四連桿仿生機器人 4
2-2 專題式學習 7
2-3 運算思維 9
三、 媒材與教學設計 12
3-1 開發工具 12
3-1-1 SolidWorks 12
3-1-2 Cura 13
3-1-3 Infinity3DP X1Ultra 13
3-1-4 PLA 14
3-2 教材開發 15
3-2-1 示範模型 15
3-2-2 仿生機器人組合包 18
3-2-3 障礙賽道 20
3-3 教學設計與流程 21
3-3-1 基礎課程:機器人 23
3-3-2 基礎課程:基礎連桿 24
3-3-3 仿生機器人組裝:M形仿生機器人 26
3-3-4 仿生機器人組裝:交叉形仿生機器人 29
3-3-5 仿生機器人組裝:死點 32
3-3-6 實作練習與障礙賽道:職人手作 33
3-3-7 反思與展示 34
四、 研究方法 35
4-1 研究架構 35
4-2 研究工具 37
4-2-1 前後測考題 37
4-2-2 手作紀錄表 38
4-2-3 反思與回饋問卷 40
4-3 資料處理 41
4-3-1 前後測資料處理 41
4-3-2 手作紀錄表資料處理 41
4-3-3 反思與回饋問卷資料處理 44
五、 研究結果 45
5-1 運算思維表現 45
5-1-1 抽象化表現 45
5-1-2 分解表現 52
5-1-3 演算法表現 56
5-1-4 評估表現 60
5-1-5 歸納表現 69
5-2 連桿仿生機器人組裝表現 73
5-3 連桿機構學習成效 79
5-4 回饋與感受 83
六、 結論與未來建議 86
6-1 結論 86
6-2 未來建議 88
參考文獻 89
中文部分 89
英文部分 89
附件一 家長知情同意書 93
附件二 機械戰馬前測題目 97
附件三 機械戰馬後測題目 99
附件四 手作紀錄表 101
附件五 機械戰馬滿意度問卷 103
參考文獻 馮丁樹(2022)。機動學(第三版)。新北市:全華圖書。
Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is Involved and What Is the Role of the Computer Science Education Community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905
Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The clearing house, 83(2), 39-43. https://doi.org/10.1080/00098650903505415
Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1(2), 67-69. http://www.inf.ed.ac.uk/publications/online/1245.pdf
Chen Y. M., & Shih J. L. (2022, June). Bebras in the Digital Game< Captain Bebras> for Students’ Computational Thinking Abilities. In CTE-STEM 2022 conference. https://doi.org/10.34641/ctestem.2022.455
Chen, S. W., & Shih, J. L. (2022, June). A STEM-based Learning Activity Instructional Design of Quadruped Bionic Robots. In CTE-STEM 2022 conference. https://doi.org/10.34641/ctestem.2022.461
Chen, S. W., & Shih, J. L., & Chen, Y. M. (2022). Four-bar Linkage Quadruped Biorobotic Instructions: Gamified Design and Development. The 30thInternational Conference on Computers in Education.
Deci, E. L., & Ryan, R. M. (2013). Intrinsic motivation and self-determination in human behavior. Springer Science & Business Media.
Denning, P. J. (2007). Computing is a natural science. Communications of the ACM, 50(7), 13-18.
Dukkipati, R. V. (2007). Mechanism and machine theory. bohem press.
Gómez-del Río, T., & Rodríguez, J. (2022). Design and assessment of a project-based learning in a laboratory for integrating knowledge and improving engineering design skills. Education for Chemical Engineers, 40, 17-28. https://doi.org/10.1016/j.ece.2022.04.002
Gosselin, C. M. (1992). The optimum design of robotic manipulators using dexterity indices. Robotics and Autonomous systems, 9(4), 213-226. https://doi.org/10.1016/0921-8890(92)90039-2
Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, 101586. https://doi.org/10.1016/j.ijer.2020.101586
Hartenberg, R., & Danavit, J. (1964). Kinematic synthesis of linkages. New York: McGraw-Hill.
He, J., & Gao, F. (2015). Type synthesis for bionic quadruped walking robots. Journal of Bionic Engineering, 12(4), 527-538. https://doi.org/10.1016/S1672-6529(14)60143-8
Helle, L., Tynjälä, P., & Olkinuora, E. (2006). Project-based learning in post-secondary education–theory, practice and rubber sling shots. Higher education, 51, 287-314.
Karahoca, D., Karahoca, A., & Uzunboylub, H. (2011). Robotics teaching in primary school education by project based learning for supporting science and technology courses. Procedia Computer Science, 3, 1425-1431.
Kilpatrick, W. H. (1918). The project method. Teachers college record, 19(4), 1-5. https://doi.org/10.1177/016146811801900404
Kumar, R., Sharma, H., Saran, C., Tripathy, T. S., Sangwan, K. S., & Herrmann, C. (2022). A Comparative Study on the Life Cycle Assessment of a 3D Printed Product with PLA, ABS & PETG Materials. Procedia CIRP, 107, 15-20. https://doi.org/10.1016/j.procir.2022.04.003
Li, D., Deng, H., Pan, Z., & Xiu, Y. (2022). Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. ISA transactions, 122, 271-280. https://doi.org/10.1016/j.isatra.2021.04.048
Mohaghegh, M., & McCauley, M. (2016). Computational Thinking: The Skill Set of the 21st Century. International Journal of Computer Science and Information Technologies (IJCSIT), 7(3) ISSN: 0975-9646, pp.1524-1530.
National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking. The National Academies Press. doi:10.17226/12840
Pan, E., Xu, H., Yuan, H., Peng, J., & Xu, W. (2021). HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters. Biomimetic Intelligence and Robotics, 1, 100002. https://doi.org/10.1016/j.birob.2021.100002
Papert, S. (1980). " Mindstorms" Children. Computers and powerful ideas. Basic Books.
Patnaik, L., & Umanand, L. (2016). Kinematics and dynamics of Jansen leg mechanism: A bond graph approach. Simulation Modelling Practice and Theory, 60, 160-169. https://doi.org/10.1016/j.simpat.2015.10.003
Peel, A., & Friedrichsen, P. (2018). Algorithms, abstractions, and iterations: Teaching computational thinking using protein synthesis translation. The American Biology Teacher, 80(1), 21-28. https://doi.org/10.1525/abt.2018.80.1.21
Rich, P. J., Egan, G., & Ellsworth, J. (2019, July). A framework for decomposition in computational thinking. In Proceedings of the 2019 ACM conference on innovation and technology in computer science education, 416-421. doi:10.1145/3304221.3319793
Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. University of Southampton (E-prints) 6pp.
Singh, R., & Kotecha, R. (2020, April). Quadruped Robot Gait Planning for Enhanced Locomotion and Stability. In Proceedings of the 3rd International Conference on Advances in Science & Technology (ICAST). doi:10.2139/ssrn.3572191
Wang, Y. (2023). The role of computer supported project-based learning in students’ computational thinking and engagement in robotics courses. Thinking Skills and Creativity, 101269. https://doi.org/10.1016/j.tsc.2023.101269
Wing, J. M. (2006). Computational thinking. Communications of the Acm, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118
Wing, J. M. (2011). Research notebook: Computational thinking—What and why. The link magazine, 6, 20-23. https://people.cs.vt.edu/~kafura/CS6604/Papers/CT-What-And-Why.pdf
Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011, March). Introducing computational thinking in education courses. In Proceedings of the 42nd ACM technical symposium on Computer science education (pp. 465-470). https://doi.org/10.1145/1953163.1953297
Yan, Z., Yang, H., Zhang, W., Lin, F., Gong, Q., & Zhang, Y. (2022). Bionic fish tail design and trajectory tracking control. Ocean Engineering, 257, 111659. https://doi.org/10.1016/j.oceaneng.2022.111659
Yang, F. C. O., Lai, H. M., & Wang, Y. W. (2023). Effect of augmented reality-based virtual educational robotics on programming students’ enjoyment of learning, computational thinking skills, and academic achievement. Computers & Education, 195, 104721.
指導教授 施如齡(Ju-Ling Shih) 審核日期 2023-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明