博碩士論文 110621015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.23.101.186
姓名 潘巧玲(Chiao-Ling Pan)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 微型大氣探空開發及T-POMDA空污實驗應用
(The Development of a Miniature Radiosonde System and its Application in T-POMDA Experiment)
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers
★ 氣膠對臺灣中部平原夏季降水日變化之影響★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋
★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation
★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-11-30以後開放)
摘要(中) 大氣邊界層內大氣垂直結構的日夜變化會影響低層大氣的空氣污染物濃度。但傳統大氣探空觀測每日僅進行兩次,不足以解析大氣垂直結構隨時間的變化;此外傳統大氣探空觀測項目僅限於氣象參數,無法知道垂直方向污染物濃度的變化。因此本研究嘗試開發一款微型大氣探空系統Aerosond,因成本低於傳統探空,故可更密集地施放以取得較高時間解析度的大氣資料,且Aerosond探空儀裝有PM感測器,可提供垂直PM2.5濃度資料。
在2021年至2023年間,Aerosond經改良溫濕度探頭的設計與升級gps天線等零件後共迭代4個版本,每次版本更新皆與氣象署於板橋站施放的Vaisala探空儀進行平行比對實驗,驗證其準確度與效能。平行比對結果顯示最終版本在3 km以下溫度的平均絕對誤差為0.6°C,其中夜間溫度的平均絕對誤差僅有0.2°C;3 km以下相對濕度、風速、風向之平均絕對誤差分別為4.5%、0.3 m s-1、7°。
每年冬末春初適逢臺灣中南部空污季節,Aerosond參與國科會臺灣大氣邊界層觀測實驗(T-POMDA),於2021至2023年間共進行四次密集觀測,每次以Aerosond探空進行一至四點的同步觀測。垂直剖面資料分析結果指出,造成空污的原因除風速弱導致水平擴散條件不良外,還包括較強的輻射逆溫強度和較高的大氣穩定度使垂直擴散條件不佳。此外沿海地區與內陸地區在空污事件下的垂直結構有所不同:沿海地區可能全日皆有逆溫層存在,使近地面PM2.5全日皆維持高值;內陸地區白天穩定度較低,PM2.5可垂直擴散到比沿海地區更高的高度,但內陸地區夜間輻射逆溫強度傾向強於沿海地區,使內陸地區夜間PM2.5累積於低層。利用Aerosond資料測定邊界層高度,本研究發現在空污事件期間使用bulk Richardson number法可獲得較合理之邊界層高度。值得一提的是,由於Aerosond探空可涵蓋10 km以下的觀測,所以可用其資料確認東南亞生質燃燒跨境傳輸PM2.5污染物分布的高度與濃度。
從平行比對實驗與T-POMDA空污實驗的觀測成果說明,Aerosond微型探空之資料具備相當的準確度,有助於解析大氣結構對PM2.5垂直濃度分布之影響,有助於探討高空污事件的發生成因,並可以做為後續模式模擬驗證或資料同化等應用。
摘要(英) The structure of planetary boundary layer (PBL) changes in a day and influences the concentration of low-altitude pollutants. However, the traditional routine radiosonde observation is conducted only twice a day and can not resolve the diurnal variation of the atmosphere. In recent years, miniature radiosonde systems were developed to meet the need of intensive observation. Thus, we developed a miniature radiosonde system with measurement of PM2.5 in this research, and name it Aerosond.
We improved the design of temperature and relative humidity sensors of Aerosond and upgraded its GPS sensor, to release four versions of Aerosond during 2021-2023. Every version of Aerosond conducted the data quality validation experiments with Vaisala RS-41 radiosonde. The results of data quality validation experiments showed that under 3 km, the latest version of Aerosond has a mean absolute error of temperature with 0.6°C (nighttime temperature of 0.2°C), relative humidity with 4.5%, wind speed with 0.3 m s-1, and wind direction with 7°.
Because weak synoptic weather made air quality worse in Central and Southern Taiwan in winter and spring, T-POMDA experiment was held to study the interaction between meteorology and air pollution. Aerosond were applied in T-POMDA experiment to have intensive observation under four air pollution events in central and southern Taiwan during 2021-2023. Vertical profile data indicate that the meteorological factors which lead air pollutants accumulated within PBL including low horizontal wind speeds, stronger radiative cooling intensity, and high atmospheric stability. Coastal regions and inland regions have different characteristics under air pollution events. In coastal regions, inversion layer may exist the whole day and lead to high PM2.5 concentration at near-surface. In daytime of inland regions, the atmospheric stability is lower than coastal regions and let PM2.5 disperse to higher altitude. Whereas in nighttime of inland region, there has strong inversion intensity and make PM2.5 accumulate in low altitude. During intensive observation period, bulk Richardson number method can provide us reasonable PBL height. It’s also worth mentioning that Aerosond’s data can be used to identify the height and concentration of long-range transported biomass burning PM2.5 from Peninsular Southeast Asia in free atmosphere, because Aerosond can cover the observation under 10 km.
The results of data quality validation experiments and the results of T-POMDA experiments indicates that Aerosond can provide reliable data, and can help us to study how atmospheric structure affects the distribution of PM2.5. Aerosond’s data can validate numerical model or be applied in data assimilation in the future.
關鍵字(中) ★ 探空
★ 大氣邊界層
★ 空氣污染
★ 弱綜觀
關鍵字(英) ★ Radiosonde
★ Planetary Boundary Layer
★ Air pollution
★ Weak synoptic
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
一、前言 1
1-1 研究動機 1
1-2 研究目的 2
二、文獻回顧 3
2-1 探空觀測 3
2-2 大氣邊界層 4
2-3 逆溫結構與空氣污染物垂直分布 5
2-4 臺灣大氣垂直剖面觀測 6
三、研究方法 9
3-1 探空設計與開發 9
3-2 探空資料處理 12
3-2-1溫濕度反應時間 12
3-2-2風 13
3-2-3資料品管與分級 14
3-3 平行比對實驗 15
3-4 大氣邊界層高度及逆溫層計算方式 17
3-4-1 大氣邊界層高度計算方式 17
3-4-2 逆溫層計算方式 19
3-5 T-POMDA實驗說明 19
四、結果與討論 22
4-1 探空儀準確度驗證 22
4-2 探空儀效能評估 29
4-3 垂直結構對於污染物分布的影響 30
4-3-1 T-POMDA IOP1 (2021/03/16-03/19) 30
4-3-2 T-POMDA IOP2 (2022/02/27-03/01) 33
4-3-3 T-POMDA IOP3 (2023/02/28-03/02) 43
4-3-4 T-POMDA IOP4 (2023/03/29-03/31) 51
4-4生質燃燒長程傳輸 54
五、總結與未來展望 60
5-1 總結 60
5-2 未來展望 61
參考文獻 63
附錄 T-POMDA密集觀測微型探空施放時間 68
參考文獻 Ao, C., Chan, T., Iijima, B., Mannucci, A., Teixeira, J., Tian, B., & Waliser, D. (2008). Planetary boundary layer information from GPS radio occultation measurements. ECMWF GRAS SAF Workshop on Applications of GPS Radio Occultation Measurements, 16 - 18 June 2008, Shinfield Park, Reading.

Chang, C.-C., Chang, C.-Y., Wang, J.-L., Lin, M.-R., Ou-Yang, C.-F., Pan, H.-H., & Chen, Y.-C. (2018). A study of atmospheric mixing of trace gases by aerial sampling with a multi-rotor drone. Atmospheric Environment, 184, 254-261.

Chen, Z., Chen, D., Zhao, C., Kwan, M.-p., Cai, J., Zhuang, Y., Zhao, B., Wang, X., Chen, B., Yang, J., Li, R., He, B., Gao, B., Wang, K., & Xu, B. (2020). Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environment International, 139, 105558.

Cheng, F. Y., Wang, Y. T., Huang, M. Q., Lin, P. L., Lin, C. H., Lin, P. H., Wang, S. H., & Tsuang, B. J. (2022). Boundary Layer Characteristics Over Complex Terrain in Central Taiwan: Observations and Numerical Modeling. Journal of Geophysical Research: Atmospheres, 127(2).

DuBois, J. L. M., Robert P.;Ziegler, Charles A. (2002). Invention and Development of the Radiosonde with a Catalog of Upper-Atmospheric Telemetering Probes in the National Museum of American History, Smithsonian Institution. Smithsonian Studies in History and Technology, 53, 1-78.

Guo, J., Chen, X., Su, T., Liu, L., Zheng, Y., Chen, D., Li, J., Xu, H., Lv, Y., He, B., Li, Y., Hu, X.-M., Ding, A., & Zhai, P. (2020). The Climatology of Lower Tropospheric Temperature Inversions in China from Radiosonde Measurements: Roles of Black Carbon, Local Meteorology, and Large-Scale Subsidence. Journal of Climate, 33(21), 9327-9350.

Holzworth, G. C. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235-242.

Hsu, C.-H., & Cheng, F.-Y. (2019). Synoptic Weather Patterns and Associated Air Pollution in Taiwan. Aerosol and Air Quality Research, 19(5), 1139-1151.

Huang, H. Y., Wang, S.-H., Huang, W.-X., Lin, N.-H., Chuang, M.-T., da Silva, A. M., & Peng, C.-M. (2020). Influence of Synoptic-Dynamic Meteorology on the Long-Range Transport of Indochina Biomass Burning Aerosols. Journal of Geophysical Research: Atmospheres, 125(3).

Hwang, W.-C., Lin, P.-H., & Yu, H. (2020). The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations. Atmospheric Measurement Techniques, 13(10), 5395-5406.

Ingleby, B., Pauley, P., Kats, A., Ator, J., Keyser, D., Doerenbecher, A., Fucile, E., Hasegawa, J., Toyoda, E., Kleinert, T., Qu, W., St. James, J., Tennant, W. & Weedon, R. (2016). Progress toward high-resolution, real-time radiosonde reports. Bulletin of the American Meteorological Society, 97(11), 2149-2161.

Kahl, J. D. (1990). Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. International Journal of Climatology, 10(5), 537-548.

Lai, H.-C., & Lin, M.-C. (2020). Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography. Atmospheric Environment, 227.

Li, H., Liu, B., Ma, X., Ma, Y., Jin, S., Fan, R., Wang, W., Fang, J., Zhao, Y., & Gong, W. (2022). The Influence of Temperature Inversion on the Vertical Distribution of Aerosols. Remote Sensing, 14(18).

Li, J., Chen, H., Li, Z., Wang, P., Fan, X., He, W., & Zhang, J. (2019). Analysis of Low-level Temperature Inversions and Their Effects on Aerosols in the Lower Atmosphere. Advances in Atmospheric Sciences, 36(11), 1235-1250.

Lin, C. H., Lai, C. H., Wu, Y. L., Lai, H. C., & Lin, P. H. (2007). Vertical ozone distributions observed using tethered ozonesondes in a coastal industrial city, Kaohsiung, in southern Taiwan. Environ Monit Assess, 127(1-3), 253-270.

Mashao, F. M., Demoz, B., Kifle, Y., Klopper, D., Chikoore, H., Sakai, R. K., & Ayisi, K. K. (2024). An Appraisal of the Progress in Utilizing Radiosondes and Satellites for Monitoring Upper Air Temperature Profiles. Atmosphere, 15(3).

Miloshevich, L. M., Paukkunen, A., Vomel, H., & Oltmans, S. J. (2004). Development and Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity Measurements. Journal of Atmospheric and Oceanic Technology, 21(9), 1305-1327.

Powell, C. L., Nielsen-Gammon, J. W., Mahoney, M. J., Angevine, W. M., Senff, C., White, A., Berkowitz, C., Doran, C., & Knupp, K. (2008). Multisensor Estimation of Mixing Heights over a Coastal City. Journal of Applied Meteorology and Climatology, 47(1), 27-43.

Prasad, P., Basha, G., & Ratnam, M. V. (2022). Is the atmospheric boundary layer altitude or the strong thermal inversions that control the vertical extent of aerosols? Science of The Total Environment, 802, 149758.

Seibert, P., Beyrich, F., Gryning, S.-E., Joffre, S., Rasmussen, A., & Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34(7), 1001-1027.

Seidel, D. J., Ao, C. O., & Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres, 115(D16).

Stull, R. B. (1988). An introduction to boundary layer meteorology, Springer Science & Business Media.

Stull, R. B. (2016). Practical Meteorology: An Algebra-based Survey of Atmospheric Science, Sundog Publishing, LLC.

Vaisala (2013). Vaisala Radiosonde RS92 Performance in the WMO Intercomparison of High Quality Radiosonde Systems. Vaisala.

Wang, S.-H., Welton, E. J., Holben, B. N., Tsay, S.-C., Lin, N.-H., Giles, D., Stewart, S. A., Janjai, S., Xuan Anh, N., Hsiao, T.-C., Chen, W.-N., Lin, T.-H., Buntoung, S., Chantara, S., & Wiriya, W. (2015). Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign. Aerosol and Air Quality Research, 15(5), 2037-2050.

Wang, Y.-C., Wang, S.-H., Lewis, J. R., Chang, S.-C., & Griffith, S. M. (2021). Determining Planetary Boundary Layer Height by Micro-pulse Lidar with Validation by UAV Measurements. Aerosol and Air Quality Research, 21(5), 200336.

WMO (2010). WMO Intercomparison of High Quality Radiosonde Systems. World Meteorological Organization.

WMO (2023). Guide to the WMO Integrated Global Observing System. World Meteorological Organization.

WMO (2024). Report of WMO’s 2022 Upper-Air Instrument Intercomparison Campaign. World Meteorological Organization.

Wu, C.-C., Lin, P.-H., Aberson, S., Yeh, T.-C., Huang, W.-P., Chou, K.-H., Hong, J.-S., Lu, G.-C., Fong, C.-T., Hsu, K.-C., Lin, I. I., & Lin, P.-L. (2005). Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An Overview. Bulletin of The American Meteorological Society, 86.

111觀測年報,2023。交通部中央氣象署。

王悅晨,2024:多部氣膠光達解析臺灣大氣邊界層特性與空氣污染差異之研究,國立中央大學大氣科學學系博士論文。

王聖翔,2019:微型邊界層探空儀開發與空污事件應用。科技部計畫MOST-107-EPA-F-006-002。

王聖翔、柯立晉、潘巧玲、劉豪聯、李育棋、游志淇、邱思翰,2023:新一代低層大氣無人機探空系統。前瞻科技與管理,12(1),38-59。

吳映蓁,2021:2019年春季泰國北部無人機觀測實驗:邊界層特徵與氣膠垂直分布之研究,國立中央大學大氣科學學系碩士論文。

吳閩倫,2023:新型微型探空儀—“Storm Tracker” 邊界層觀測資料校正流程建置與資料修正能力比較,中國文化大學地學研究所大氣科學組碩士論文。

呂佳穎、林博雄、李育棋、游志淇,2016:雷射雲冪儀應用於台灣各種地貌之混合層高度量測。大氣科學,44(2),149-171。

周書華、倪長健、劉培川,2015:成都地區大氣邊界層逆溫特徵分析。氣象與環境學報, 31(02),108-111。

洪家呈,2023:無人機觀測臺南地區海陸風三維結構與伴隨之PM2.5演化,國立中央大學大氣科學學系碩士論文。

張儀峰、陳世嵐,2012:近 30 年之氣象局探空觀測與資料初步檢視。101年天氣分析與預報研討會。

彭啟明、林松錦,1995:台灣北部地區混合層高度的觀測與模擬。大氣科學,23(3-4),311-336。

萬超悅、徐婷婷、王艷,2024:中國大氣逆溫的時空分布特徵。高原氣象,43(02),434-449。

劉豪聯,2024:宜蘭地形迴流與冬季降雨機制–無人機觀測與分析,國立中央大學大氣科學學系碩士論文。

鄧詠霖、廖宇慶、張少凡、鄭羽廷、林沛練、鄧仁星,2020:邊界層風場垂直結構及風機尾流效應的多光達與測風塔觀測研究。大氣科學,48(1),115-141。
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2024-11-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明