博碩士論文 110621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.135.207.201
姓名 洪翊彬(Yi-Bin Horng)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(On the Energetics of Convectively Coupled Kelvin Waves)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化★ MJO對南海颱風活動之影響
★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?★ Changes of the Hadley Cell During the Last Four Decades
★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation★ Changes of Tropical Tropopause in Response to Global Warming
★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究
★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent
★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study★ The role of shallow convection in tropical circulation: a simple analytic approach
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 對流耦合之凱爾文波(Convectively coupled Kelvin wave; CCKW)是一種存在於赤道地區的東傳大尺度波動,會造成風場與壓力場的變化,因此通常伴隨著對流,並為熱帶地區的國家帶來許多降雨事件,對於熱帶的天氣與氣候調節扮演相當重要的角色。由於沒有地形的阻礙,CCKW 在印度洋和太平洋海盆相對活躍,但這兩個區域的CCKW在強度、對稱性與傳播速度上皆顯示出不同的特性。
本研究的前半部分針對印度洋和太平洋的CCKW結構進行分析,在水平空間結構上,印度洋的CCKW與理論的凱爾文波相似,而太平洋的CCKW除了有較顯著的經向環流,其伴隨的對流訊號也有明顯向北半球偏移的特性;在垂直結構部分,兩者皆表現出隨著高度向西傾斜的特性,但太平洋的CCKW除了有較弱的對流前緣邊界層濕化,在對流最強的階段也較為不傾斜。我們進一步分析兩者在對流發展過程的垂直速度變化,結果顯示太平洋的CCKW具有較大的強度,但對流發展的過程轉換更為快速,可能與太平洋較有利於對流發展的環境條件有關。
為了解釋CCKW在印度洋和太平洋海盆的差異,我們在本研究的後半部分利用濕靜能收支方程來分析各個貢獻項,以揭示驅動 CCKW 能量充放電過程的主導因素。結果表明,關鍵因素可能在於水平平流、垂直平流與視水汽源匯(apparent moisture source and sink)之間的相互影響,水平平流項的差異可能是由於兩個洋區的背景風向不同所造成;而垂直平流與視水汽源匯在太平洋明顯有較快的充放電相位轉換,暗示太平洋CCKW較強的上下層耦合,我們推測太平洋地區在基本狀態下的濕靜能較大,較有利於對流發展,CCKW自身造成的震盪即能輕易激發對流生成,這個推測與太平洋CCKW垂直結構中較弱的邊界層濕化吻合。
摘要(英) Convectively coupled Kelvin wave (CCKW) is one of the important large-scale atmospheric oscillations in equatorial areas. It is an eastward-propagating mode that constantly causes fluctuations in pressure, rainfall and winds, and thus, CCKW often takes part in shaping the weather and climate by bringing countless rainfall events to countries in tropics. CCKW is relatively active in the Pacific and the Indian ocean basins due to the absence of obstruction from topography, and yet it shows distinct properties over these two regions, including the intensity, symmetry, and propagation speed.
In this study, we first compare the structures of CCKW between the Indian and the Pacific basins. In terms of horizontal structure, the Indian CCKW bears a resemblance to the theoretical Kelvin wave, while the Pacific CCKW exhibits significant meridional winds and a noticeable northward deflection of its convective part. The vertical profiles of CCKW in both the Indian and the Pacific basins present a westward tilt with height; however, the Pacific CCKW shows a weaker pre-moistening at the leading edge of the convection and a less tilted pattern during the peak of convection. A further examination of vertical velocity suggests that the Pacific CCKW has a larger amplitude but experiences more rapid transitions between convective stages, which is possibly related to the differences in environmental conditions.
To explain the structural differences between the Indian and the Pacific CCKW, we conduct a detailed moist static energy (MSE) budget analysis to uncover the dominant factors in driving the energy recharge-discharge process of CCKW. Even though the MSE tendency term in both basins resembles each other, the contributing terms in the MSE budget indicate that the energy comes from diverse sources. The key factors might lie in the interplay between horizontal advection, vertical advection and the apparent moisture source and sink profiles, especially in the low troposphere. The distinction in horizontal advection term is possibly related to the background wind direction, while the more upright structures of vertical advection and the apparent moisture sink reveal an instantaneous recharge-discharge phases change, indicating a stronger coupling between lower and upper troposphere in the Pacific CCKW. We speculate that convection associated with CCKW is more easily triggered due to the larger background state of MSE in the Pacific basin, which is probably the reason for the weaker boundary layer pre-moistening in the Pacific CCKW.
關鍵字(中) ★ 對流耦合之凱爾文波
★ 濕靜能收支
關鍵字(英) ★ convectively coupled Kelvin waves
★ moist static energy budget
論文目次 摘要 ii
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures vii
Chapter 1 Introduction 1
Chapter 2 Data and methodology 3
2.1 Data 3
2.2 Equatorial wave theory 4
2.3 Space-time spectral analysis and filtering 6
2.4 Empirical orthogonal function analysis and regression maps 8
2.5 Composite analysis 9
2.6 Moist static energy budget analysis 10
Chapter 3 Climatological features of CCKW 12
3.1 Active region of CCKW 12
3.2 Horizontal structure of CCKW 12
3.3 Propagation of CCKW 14
Chapter 4 Convective process associated with CCKW 15
4.1 Vertical structure and convective stages 15
4.2 MSE budget analysis on CCKW 18
Chapter 5 Summary 22
References 25
Supporting Information 40
參考文獻 Adames, A. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017: Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO2. Journal of Advances in Modeling Earth Systems, 9, 2946–2967.
Baranowski, D. B., M. K. Flatau, and A. J. Matthews, 2016: Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophys. Res. Lett., 43, 8269–8276.
Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian ocean tropical cyclones by the Madden–Julian Oscillation and convectively coupled equatorial Waves. Mon. Wea. Rev., 134, 638–656.
Chen, Y.-C., and J.-Y. Yu, 2021: Modes of tropical convection and their roles in transporting moisture and moist static energy: contrast between deep and shallow convection. Clim. Dyn., 57, 1789–1803.
Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira-Sugiyama cumulus parameterization. Part II: understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615–639.
Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44, 2324–2340.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. R. Met. Soc., 106, 447–462.
Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 2707–2721.
Hayashi, Y.-Y., 1970: A theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Japan, 48, 140–160.
Hersbach, H., and Coauthors, 2020: Global reanalysis: Goodbye ERA-interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24.
Huang, P., and R. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. climate, 24, 4451–4465.
Inoue, K., and L. Back, 2015: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 4148–4166.
Inoue, K., A. F. Adames, and K. Yasunaga, 2020: Vertical velocity profiles in convectively coupled equatorial waves and MJO: new diagnoses of vertical velocity profiles in the wavenumber-frequency domain. J. Atmos. Sci., 77, 2139–2162.
Kikuchi, K., G. N. Kiladis, J. Dias, and T. Nasuno, 2017: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: slow Kelvin waves as building blocks. Clim. Dyn., 50, 4211–4230 (2018).
Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian Oscillation. J. Atmos. Sci., 62, 2790–2809.
Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003.
Lindzen, R. S., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31, 156–179.
Lubis, S. W., and R. R. Muhamad, 2020: Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. Quart. J. R. Met. Soc., 41, 2418–2440.
Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. climate, 22, 711–729.
Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535.
Masunaga, H., and T. S. L’Ecuyer, 2014: A mechanism of tropical convection inferred from observed variability in the moist static energy budget. J. Atmos. Sci., 71, 3747–3766.
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1), 25–43.
Mayta, V. C., G. N. Kiladis, J. Dias, P. L. S. Dias, and M. Gehne, 2021: Convectively coupled Kelvin waves over tropical South America. J. Climate, 34, 6531–6547.
Mayta, V. C., A. F. Adames, and F. Ahmed, 2022: Westward-propagating moisture mode over the tropical Western Hemisphere. Geophys. Res. Lett., 49, e2022GL097799.
Mayta, V. C., and A. F. Adames, 2023: Moist Thermodynamics of Convectively Coupled Waves over the Western Hemisphere. J. Climate, 36, 2765–2780.
Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the west African monsoon. J. Climate, 20, 1487–1503.
Nakamura, Y., and Y. N. Takayabu, 2022: Convectively couplings with equatorial Rossby waves and equatorial Kelvin waves. Part I: coupled wave structures. J. Atmos. Sci., 79, 247–262.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12.
Neelin, J. D., and I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348.
Neena, J. M., E. Suhas, and X. Jiang, 2022: Modulation of the Convectively Coupled Kelvin Waves by the MJO over Different Domains. J. Climate, 35, 3425–3439.
Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 1342–1359.
Roundy, P. E., 2012: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden-Julian Oscillation. J. Atmos. Sci., 69, 2097–2106.
Roundy, P. E., 2019: Interpretation of the spectrum of eastward-moving tropical convective anomalies. Quart. J. R. Met. Soc., 146, 795–806.
Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 30–53.
Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 1655–1668.
Sumi, Y., and H. Masunaga, 2016: A Moist Static Energy Budget Analysis of Quasi-2-Day Waves Using Satellite and Reanalysis Data. J. Atmos. Sci., 73, 743–759.
Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433–449.
Takayabu, Y. N., K.-M. Lau, and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 1892–1913.
Tsai, Y.-C., and J.-Y. Yu, 2023: Contrasting the energy recharge-discharge cycle between propagating and eastward-decaying Madden-Julian Oscillation events. Clim. Dyn., 59, 1–15.
Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: a three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 1108–1124.
Wang, H., and R. Fu, 2007: The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J. Climate, 20, 1188–1201.
Wang, L., and L. Chen, 2016: Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dynamics of Atmospheres and Oceans, 76, 116–126.
Wang, L., and T. Li, 2017: Roles of convective heating and boundary-layer moisture asymmetry in slowing down the convectively coupled Kelvin waves. Clim. Dyn., 48(7–8), 2453–2469.
Wheeler, M. C., and G. N. Kiladis, 1999: Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain. J. Atmos. Sci., 56(3), 374–399.
Wheeler, M. C., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57(5), 613–639.
Wheeler, M. C., and H. Nguyen, 2015: TROPICAL METEOROLOGY AND CLIMATE | Equatorial Waves. In Encyclopedia of Atmospheric Sciences, 102–112.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.
Yang, G.-Y., B. Hoskins, and J. Slingo, 2007a: Convectively coupled equatorial waves. Part I: horizontal and vertical structures. J. Atmos. Sci., 64, 3406–3423.
Yang, G.-Y., B. Hoskins, and J. Slingo, 2007b: Convectively coupled equatorial waves. Part II: propagation characteristics. J. Atmos. Sci., 64, 3424–3437.
Yang, G.-Y., and B. Hoskins, 2013: ENSO impact on Kelvin waves and associated tropical convection. J. Atmos. Sci., 70, 3513–3532.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2023-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明