博碩士論文 110623009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.227.48.131
姓名 王鈺順(YuShun Wang)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 Koyo衛星任務與酬載控制軟體之設計、測試與驗證
(Design, Verification, and Validation of Koyo Mission and Payload Control Software)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 福衛五號軌道推算軟體敏感度及飛行資料分析
★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試★ 中央大學地面系統設計、整測與驗證
★ 太空飛行器電力次系統硬體迴路測試平台之建立★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證
★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型★ 飛鼠號立方衛星之飛行軟體及韌體設計
★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去半個世紀的傳統太空產業中,政府機構或大型國防承包商往往掌握著大量資源
以及前往太空所需的關鍵技術。然而近十年來大量私人企業與新創公司的興起,利
用其靈活的組織架構嘗試開發創新技術,以及獨特的商業模式帶來「新太空」(New
space)革命。新太空產業多半專注於降低成本並嘗試用更便宜的方式進入太空,例如可
重複使用的火箭、小型化衛星、先進的製造技術,並尋求更快的開發週期。
這也導致越來越多的私人企業和新創公司致力於提供包括發射服務、立方衛
星(CubeSat)解決方案及其他即服務(As-a-service)解決方案。更低成本的太空進入機會
讓大學和更多民間公司得以發展自己的太空任務,同時也加速了我們對宇宙未知領域
的探索。
Kinetic Optical Yaw Observer (Koyo)是一個由Hex20 Inc.、互宇向量股份有限公
司(Aegiverse Co., Ltd.)和國立中央大學合作開發的3U立方衛星任務。該衛星上搭載了
一個科學酬載和一個服務酬載。該科學酬載是一個用於技術驗證的光纖陀螺儀,同時
測量低地球軌道上由空氣阻力產生的擾動力矩。且目前用於軌道推算大氣模型主要為
經驗模式做推斷,也就是利用衛星觀測與地面條件建立的模型。而該任務提出基於轉
動的量測原理,將能夠更有效觀測軌道上的空氣阻力,可望精準地改善大氣模型。
服務酬載則是一個VHF應答器,提供自動封包報告系統(Automatic Packet Report
System (APRS))的轉發功能,用於在軌道上中繼VHF業餘無線電頻段的訊息。
本論文首先概述了太空飛行器系統架構,並簡單介紹太空飛行器當中的各次系統。
第二章描述任務生命週期以及koyo任務介紹,詳細說明了該任務的目標和操作構想。第
三章接著提到任務酬載以及其數據介面。第四章則是論文的主要重點,該章節描述酬
載控制軟體設計與衛星電腦和任務酬載之間的韌體介面。此外,第五章還將討論任務
酬載與衛星整測平台的軟體整合。最後,第六章從計劃管理和工程的角度總結了該任
務的結論,並提出了koyo任務未來的工作與展望。
摘要(英) In the traditional space industry, government agencies or large defense contractors dominated the resources and accessibility to space. “New Space”, refers to the recent wave
of private companies and startups that are revolutionizing the space sector with innovative technologies and business models. New space companies focus on reducing costs,
increasing access, and leveraging modern technologies such as reusable rockets, miniaturized satellites, advanced manufacturing techniques, and seeking faster development cycles.
This has led to more and more private entities and new startups aiming to provide different kinds of services including launch services, CubeSat solutions, and other as-a-service
solutions. The easier access to space gives universities and industry a chance to develop
their space missions and also speeds up the exploration of our universe.
Kinetic Optical Yaw Observer (Koyo) is a 3U CubeSat mission developed under the
cooperation of Hex20 Inc., Aegiverse Co., Ltd., and National Central University (NCU).
There is a science payload and a service payload onboard. The science payload is a
Fiber-Optic Gyroscope (FOG) for technology demonstration and verification, as well as
to measure perturbing torque along the Low Earth Orbit (LEO). The service payload is
a Very High Frequency (VHF) transponder that provides an Automatic Packet Report
System (APRS) function to relay messages in VHF amateur radio bands.
In this thesis, an overview of the spacecraft system and a brief introduction to each
subsystem will be delivered first. The second chapter describes the mission life cycle and
koyo mission overview which elaborates the objectives and the concept of this mission.
Then introduce the payload and its data interface. The main focus of this thesis is on the
payload control software design and firmware interfaces between the On Board Computer
(OBC) and payloads. Furthermore, the payload integration with the FlatSat will also
be noted in the fifth chapter. Finally, chapter six gives the conclusion from the project
perspective and the engineering perspective, as well as the future work of the koyo mission.
關鍵字(中) ★ Koyo
★ 任務設計
★ 系統整合
★ 飛行軟體
★ 立方衛星
★ 酬載介面
關鍵字(英) ★ Koyo
★ Mission Design
★ System Integration
★ Flight Software
★ CubeSat
★ Payload Interface
論文目次 Table of Contents
Abstract i
Acknowledgements iii
Table of Contents v
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Space System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Spacecraft System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Command and Data Handling Subsystem . . . . . . . . . . . . . . . 4
1.3.3 Electrical Power Subsystem . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Attitude Determination and Control Subsystem . . . . . . . . . . . 5
1.3.5 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.7 Thermal Control Subsystem . . . . . . . . . . . . . . . . . . . . . . 6
1.3.8 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
v
1.4 Mission Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Pre-phase A and Phase A . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Phase B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Phase C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Phase D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.5 Phase E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.6 Phase F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Koyo Mission Overview 11
2.1 Project Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Mission Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Mission Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Concept of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Risk Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Payloads and Payload Interfaces 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 FOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Principle of FOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 GP-1Z0-00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Commands and Packets . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 VHF Transponder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 AX.25 and APRS Packet . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 OrbitLink transponder and Commands . . . . . . . . . . . . . . . . 29
4 Payloads Control Software Design, Verification and Test 31
4.1 Basic Functional Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
vi
4.1.1 FOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 APRS Transponder . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Payload Control Software Design . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 FOG Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 FOG APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 VHF APRS Transponder Data Structure and APIs . . . . . . . . . 41
4.3 Functional Test with OBC . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 On Board Computer . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 FOG Test with OBC . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 VHF Transponder Test with OBC . . . . . . . . . . . . . . . . . . . 49
5 FlatSat Validation and Test 51
5.1 FlatSat Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.1 Hex20 FlatSat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Acceptance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Software Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 FOG Software Integration . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 VHF Transponder Software Integration . . . . . . . . . . . . . . . . 60
6 Conclusion and Future Works 62
6.1 Conclusion from Project Perspective . . . . . . . . . . . . . . . . . . . . . 62
6.2 Conclusion from Engineering Perspective . . . . . . . . . . . . . . . . . . . 62
6.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Bibliography 64
A IEEE-754 Decimal to Binary in C 68
vii
B IEEE-754 Binary to Decimal in C 70
C IEEE-754 Binary to Decimal in Python 71
參考文獻 Bibliography
[1] NASA S3VI. Space system architecture lecture 1. https://s3vi.ndc.nasa.gov/
ssri-kb/static/resources/01010wk1_framing.pdf, 2020.
[2] United States Space Force. Space capstone publication 10 aug 2020.
https://www.spaceforce.mil/Portals/1/Space%20Capstone%20Publication_
10%20Aug%202020.pdf, 2020.
[3] Giuseppe Di Mauro, Margaret Lawn, and Riccardo Bevilacqua. Survey on guidance
navigation and control requirements for spacecraft formation-flying missions. Journal
of Guidance, Control, and Dynamics, 41(3):581–602, 2018.
[4] Charles D Brown. Elements of spacecraft design. Aiaa, 2002.
[5] Wilfried Ley, Klaus Wittmann, and Willi Hallmann. Handbook of space technology.
John Wiley & Sons, 2009.
[6] Space Studies Board, Engineering National Academies of Sciences, Medicine, et al.
Achieving science with CubeSats: Thinking inside the box. National Academies Press,
2016.
[7] Erik Kulu. Nanosatellites by sizes and types. https://www.nanosats.eu/#figures,
2023 Jan. Accessed: 2023-03-14.
[8] Alicia Johnstone. Cubesat design specification (1u – 12u) rev 14.1 cp-cds-r14.1.
https://www.cubesat.org, 2022 Feb. Accessed: 2023-01-31.
[9] Small Spacecraft Systems Virtual Institute. State-of-the-art of small spacecraft technology. https://www.nasa.gov/wp-content/uploads/2024/03/soa-2023.pdf?
emrc=8ad1a1, 2022. Accessed: 2023-09-26.
[10] Stephen J Kapurch. NASA systems engineering handbook. Diane Publishing, 2010.
[11] NASA. Seh3.0 program life cycle. https://www.nasa.gov/reference/
3-0-nasa-program-project-life-cycle/, 2023 July 26. Accessed: 2024-03-04.
64
[12] NASA. Seh2.5 cost effectiveness considerations. https://www.nasa.gov/
reference/2-5-cost-effectiveness-considerations/#Fig2-5-1, 2023 July 26.
Accessed: 2024-03-04.
[13] Aegverse Co. Ltd. Fiber-optic gyroscope in autonomous technology. https:
//aegiverse.com, 2024.
[14] Hex20 Pty. Ltd. Hex20 mission critical technology partner. https://hex20.com.au,
2024.
[15] LETSCOM International Ltd. Connecting you in space. http://www.letscom.com.
tw, 2024.
[16] YuShun Wang, YiYu Chang, Merlin M Mendoza, HueiWen Siao, TungJun Lin, and
YiShiang Tzeng. The mission concept and system definition of neutral air density
in-situ research (nadir) a 6u cubesat constellation. international Conference on Astronautics and Space Exploration, 2022.
[17] Skyroot Aerospace. Opening space for all. https://skyroot.in, 2024.
[18] Riley M Fitzgerald and Kerri L Cahoy. Localized in-situ density measurement in low
earth orbit via drag torque estimation. Journal of Spacecraft and Rockets, 56(5):1564–
1579, 2019.
[19] Raphael F Garcia, Zimo R Sibbing, and Adriaen Van Camp. Can we estimate air
density of the thermosphere with cubesats? Journal of Spacecraft and Rockets,
56(4):1084–1091, 2019.
[20] Moa Persson. Venus thermosphere densities as revealed by venus express torque and
accelerometer data, 2015.
[21] Dan Alvarez, Aldo Aguilar-Nadalini, Jos´e Bagur, V´ıctor Ayerdi, and Luis Zea. Design
and on-orbit performance of the attitude determination and passive control system
for the quetzal-1 cubesat. J. Small Satell, 12(2):1231–1247, 2023.
[22] Natalia Piotrowski. Implementation and characterization of commercial off-the-shelf
inertial measurement units for the attitude determination system of the move-iii
cubesat. 2022.
[23] SatNOGS. Nutsat flight data. https://dashboard.satnogs.org/d/hplsMfA4k/
nutsat-1?orgId=1&refresh=30s&from=now-2y&to=now, 2024.
[24] The International Amateur Radio Union. Amateur satellites short info paper. http:
//www.iaru-r1.org/wiki/Amateur_satellites_short_info_paper, 2018. Accessed: 2024-3-23.
65
[25] Evert Jan Post. Sagnac effect. Reviews of Modern Physics, 39(2):475, 1967.
[26] Sagnac effect. https://en.wikipedia.org/wiki/Sagnac_effect, 2024.
[27] Kevin Brown. Reflections on relativity. https://mathpages.com/rr/s2-07/2-07.
htm, 2004.
[28] Herve C Lefevre. The Fiber-Optic Gyroscope. Artech House, 2014.
[29] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008), pages 1–84, 2019.
[30] Bridget Benson. Clarifying the amateur bell 202 modem. 2014.
[31] sigidwiki.com. Automatic packet reporting system (aprs). https://www.sigidwiki.
com/wiki/Automatic_Packet_Reporting_System_(APRS), 2023 July. Accessed:
2023-03-14.
[32] IARU. Iaru region 3 interim band plan. https://www.iaru.org/wp-content/
uploads/2020/01/R3-004-IARU-Region-3-Bandplan-rev.2.pdf. Accessed: 2024-
4-05.
[33] William A Beech, Douglas E Nielsen, and Jack Taylor. Ax. 25 link access protocol
for amateur packet radio. Tucson Amateur Packet Radio Corporation, pages 1–133,
1998.
[34] APRS Working Group et al. Aprs protocol reference. Tucson Amateur Packet Radio
Corporation, 2000.
[35] wb2osz. Direwolf. https://github.com/wb2osz/direwolf, 2024.
[36] Yi-Chung Chiu, Loren C Chang, Chi-Kuang Chao, Tzu-Ya Tai, Kai-Lun Cheng,
Hsin-Tzu Liu, Rong Tsai-Lin, Chi-Ting Liao, Wei-Hao Luo, Guan-Po Chiu, et al.
Lessons learned from ideassat: Design, testing, on orbit operations, and anomaly
analysis of a first university cubesat intended for ionospheric science. Aerospace,
9(2):110, 2022.
[37] Amal Chandran, Tzu-Wei Fang, Loren Chang, Priyadarshan Hari, Thomas N Woods,
Chi-Kuang Chao, Richard Kohnert, Ankit Verma, Spencer Boyajian, Yi Duann, et al.
The inspiresat-1: Mission, science, and engineering. Advances in Space Research,
68(6):2616–2630, 2021.
[38] Loren C Chang, Wei-Yi Lin, Yi-Hsuan Chou, Jen-Siang Lin, Chieh Lung, I Chen,
Kai-Jie Hou, Glenn Franco Gacal, Yi-Chung Chiu, Yushun Wang, et al. The deep
space radiation probe: Development of a first lunar science payload for space environment studies and capacity building. Advances in Space Research, 2024.
66
[39] YuShun Wang, Binson S Lee, Ruo-Yu Wang, Glenn Franco Gacal, Hsin-I Tu, Kai-Jye
Hou, Wei-Yi Lin, and Loren C Chang. Scintillation and ionosphere extended (scionx): A 12u cubesat for ionospheric and atmospheric science. SmallSat Conference,
2023.
[40] CU Boulder LASP. International satellite program in research and education of
satellites. https://lasp.colorado.edu/inspire/, 2024.
[41] OpenC3. The software for integration, test, and operations. https://openc3.com,
2024.
[42] Walter Peeters. Toward a definition of new space? the entrepreneurial perspective.
New Space, 6(3):187–190, 2018.
指導教授 張起維(Loren C. Chang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明