博碩士論文 110624002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.138.179.120
姓名 劉佳怡(Chia-Yi Liu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 節理岩體滲透係數先天異向性及 應力引致異向性對岩坡穩定性之影響
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 針對屬於裂隙介質之節理岩體所形成的岩石邊坡,其節理所形成之複雜網
路往往是地下水流的重要通道,因此其特性對岩石邊坡地下水滲流系統之影響需被進一步探討。根據前人研究發現節理位態分佈會使岩體滲透係數產生先天異向性,同時應力亦會影響不同位態節理之內寬變化,因而導致滲透係數產生應力引致異向性。於是本研究使用 FLAC3D 軟體建立岩石邊坡模型,透過擬連續體模式計算受到節理先天及應力引致異向性影響之節理岩體滲透係數張量,將計算結果代回岩石邊坡模型後,經滲流分析得到穩態孔隙水壓於岩石邊坡模型之分佈情形,最後利用剪力強度折減法進行邊坡穩定分析探討受節理特性影響之滲流異向性對岩石邊坡穩定性之影響。結果顯示在分析條件為均向應力下,當平行坡面之節理數量明顯多於垂直坡面之節理數量時,相較節理均向分佈情況,節理先天異向性會影響地下水流方向使孔隙水壓值有相對差異28%,進而影響後續邊坡之安全係數;另外,在分析條件為節理均向分佈情況下,當最大主應力平行於坡面且明顯大於垂直於坡面之最小主應力時,會對平行於坡面之節理產生影響,因此與均向應力分佈情形相比孔隙水壓值有相對差異-6%,顯示應力引致滲流異向性會影響到邊坡孔隙水壓的分佈情形;綜合各分析條件結果,同時考慮節理先天異向性與應力引致之滲透係數異向性,與具有均質均向滲透係數之案例比較節點孔隙水壓值有相對差異-38%因此有較大安全係數。本研究探討不同分析條件下,節理特性對節理岩體滲透係數張量的影響,進而影響岩石邊坡之滲流系統,導致岩石邊坡穩定性受到影響,因此未來於岩石邊坡穩定性分析時,建議考慮節理特性對地下水滲流系統之影響。
摘要(英) In the case of rock slopes formed by jointed rock masses in fractured media, the complex network of joints often serves as a crucial pathway for subsurface water flow. As a result, understanding the characteristics of the joints and their impact on the groundwater seepage system in rock slopes requires further investigation. Previous studies have indicated that the orientations of joints induced inherent
anisotropic permeability in the rock mass. Additionally, stress affects the variation in aperture of joints with different orientations, resulting in stress-induced permeability anisotropy. Hence, this study utilizes the FLAC3D software to construct a rock slope model, via continuum approach to calculate the equivalent permeability tensor of the jointed rock mass, accounting for both inherent anisotropy and stress-induced anisotropy. The computed results are then incorporated into the model, enabling the determination of the distribution of steady-state pore water pressure in the rock slope through seepage analysis. Ultimately, slope stability analysis was conducted to examine the impact of permeability anisotropy induced by joint characteristics on the stability of rock slopes.
The results show that under isotropic stress conditions,when the number of bedding parallel joints was significantly more than the bedding perpendicular joints, inherent anisotropy of joints affected the direction of groundwater flow, resulting in a relative difference of -28% in pore water pressure distribution within the slope compared to the scenario of joint isotropy. This, in turn, affected the safety factor in subsequent slope stability analyses. Additionally, under the conditions of joint
isotropy, when the maximum principal stress was parallel to the slope surface and notably greater than the minimum principal stress perpendicular to the slope surface,
it influenced the joints parallel to the slope surface. Compared to the scenario of isotropic stress distribution, this led to a relative difference of -6% in pore water
pressure distribution. These findings demonstrate that stress-induced affects the distribution of pore water pressure in slopes.Overall, this study explores the impact of joint characteristics on the permeability coefficient tensor of jointed rock masses, subsequently influencing the
seepage system in rock slopes and the stability of rock slopes. Therefore, future analyses of rock slope stability should consider the influence of joint characteristics
on the groundwater seepage system.
關鍵字(中) ★ 岩石邊坡穩定分析
★ 擬連續體模式
★ FLAC 3D
★ 滲透係數異向性
關鍵字(英) ★ Rock slope stability
★ Continuum approach
★ FLAC3D
★ Anisotropic permeability
論文目次 摘要 i
Abstract ii
致 謝 iv
目 錄 v
圖目錄 VIII
表目錄 XII
第一章 前言 1
1.1 研究背景概述 1
1.2 研究動機與流程 9
第二章 研究方法 12
2.1 節理岩體滲透係數張量計算 12
2.1.1 節理方位之密度函數E(n ̂) 13
2.1.2 節理長度之密度函數f(r) 15
2.1.3 節理內寬g(t) 16
2.1.4 節理體密度ρ 19
2.2 滲流分析架構 21
2.3 邊坡穩定分析架構 22
第三章 岩坡FLAC3D數值模型建立與節理岩體滲透係數張量計算 25
3.1 數值模型建立 25
3.2 數值模型邊界條件設定 27
3.3 座標系統 28
3.4 節理岩體滲透係數張量計算之參數設定 29
3.4.1 考慮節理先天異向性之分析條件 30
3.4.2 考慮應力引致異向性之分析條件 34
第四章 結果與討論 38
4.1 邊界條件對數值模型之影響 38
4.2 現地微水試驗濾定節理岩體滲透係數張量 41
4.3 節理岩體滲透數張量於岩石邊坡模型之分佈情形 46
4.3.1 均向應力條件下節理先天異向性之影響 46
4.3.2 節理分佈為均向條件下應力引致滲透係數異向性之影響 50
4.3.3 同時節理考慮先天異向性與應力引致之滲透係數異向性之影響 53
4.4 孔隙水壓於岩石邊坡模型之分佈情形 57
4.4.1 均向應力條件下節理先天異向性對孔隙水壓分佈之影響 57
4.4.2 節理分佈為均向條件下應力引致滲透係數異向性對孔隙水壓分佈之影響 62
4.4.3 同時考慮節理先天異向性與應力引致滲透係數異向性對孔隙水壓分佈之影響 66
4.5 滲流異向性對邊坡穩定分析之影響 68
4.5.1 均向應力條件下節理先天滲透係數異向性對岩石邊坡穩定之影響 69
4.5.2 節理均向分佈條件下應力引致滲透係數異向性對岩石邊坡穩定之影響 71
4.5.3 同時考慮先天異向性與應力引致滲透係數異向性對岩石邊坡穩定之影響 73
第五章 結論與建議 74
5.1 結論 74
5.2 建議 76
參考文獻 77
附錄A 82
參考文獻 1.Azizian, A., and Popescu, R. (2006). Three-dimensional seismic analysis of submarine slopes, Soil Dynamics and Earthquake Engineering, 26(9), 870-887.
2.Bandis, S.C., Lumsden, A.C., and Barton, N.R. (1983). Fundamentals of rock joint deformation, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249-268.
3.Barton, C. M. (1977). A geotechnical analysis of rock structure and fabric in C.S.A. Mine, Cobar, New South Wales, Applied Geomechanics Technical Paper, 24, Australia.
4.Bouwer, H., and Rice, R.C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, 12(3), 423-428.
5.Chugh, A. K. (2003). On the boundary conditions in slope stability analysis, International Journal for Numerical and Analytical Methods in Geomechanics, 27, 905-926.
6.Dawson, E.M., Roth, W.H., and Drescher, A. (1999). Slope stability analysis by strength reduction, Geotechnique, 49(6), 835-840.
7.Dong, J. J., Tzeng, J. H., Wu, P. K., and Lin, M. L. (2006). Effects of anisotropic permeability on stabilization and pore water pressure distribution of poorly cemented stratified rock slopes, International Journal for Numerical and Analytical Methods in Geomechanics, 30(15), 1501-1600.
8.Dong, J. J., Tu, C. H., Lee, W. R., and Jheng, Y. J. (2012). Effects of hydraulic conductivity/strength anisotropy on the stability, Computers and Geotechnics, 40, 147-159.
9.Goodman, R. E. (1989). Introduction to rock mechanics, 2nd ed. New York: John Wiley & Sons Ltd.
10.Griffiths, D.V., and Lane, P.A. (1999). Slope stability analysis by finite elements, Geotechnique, 49(3), 387-403.
11.Halford, K. J., and Kuniansky, E. L. (2002). Documentation of spreadsheets for the analysis of aquifer-test and slug-test data, USGS Publications Warehouse, Version 1.2.
12.Itasca Consulting Group, Inc. (2017). FLAC3D — Fast Lagrangian Analysis of Continua in Three-Dimensions, Version 6.0., Minneapolis: Itasca.
13.Kanatani, K. (1984). Distribution of directional data and fabric tensors. International Journal of Engineering Science, 22(2), 149-164.
14.Liu, J., Elsworth, D., and Brady, B. H. (1999). Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. International Journal of Rock Mechanics and Mining Sciences, 36(5), 581-589.
15.Markovich, K. H., Manning, A. H., Condon, L. E., and McIntosh, J. C. (2019). Mountain‐block recharge: A review of current understanding, Water Resources Research, 55, 8278-8304.
16.Mauldon, M. (1998). Estimating mean fracture trace length and density from observations in convex windows, Rock Mechanics and Rock Engineering, 31(4), 201-216.
17.Nian, T.K., Huang, R.Q., Wan, S.S., and Chen, G.Q. (2012). Three-dimensional strength-reduction finite element analysis of slopes: Geometric effects, Canadian Geotechnical Journal, 49(5), 574-588.
18.Oda, M. (1985). Permeability tensor for discontinuous rock masses, Geotechnique, 35(4), 483-495.
19.Oda, M. (1986). An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock mass, Water Resources Research, 22(13), 1845-1856.
20.Oda, M. (1993). Modern developments in rock structure characterization, Compressive Rock Engineering. 1st ed., 185-200, Elsevier, New York.
21.Olsson, R., and Barton, N. (2001). An improved model for hydromechanical coupling during shearing of rock joints, International Journal of Rock Mechanics and Mining Sciences, 38, 317-329.
22.Piteau, D. R., and Jennings, J. E. (1970). The effects of plan geometry on the stability of natural slopes in rock in the Kimberley area of south Africa, 1970 2nd ISRM Congress, Belgrade, Yugoslavia.
23.Thiem, G. (1906). Hydrologic methods: Leipzig, Gebhardt.
24.Toth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins, Journal of Geophysical Research, 68(16), 4795-4812.
25.Roscoe, K. H. (1970). The influence of strains in soil mechanics, Geotechnique, 20(2), 129-170.
26.Sharp, J.C., Maini, Y.N., and Harper, T.R. (1972). Influence of groundwater on the stability of rock masses, Transactions of the Institute Mining and Metallurgy, 81,13-20.
27.Snow, D.T. (1968). Rock fracture spacings, openings, and porosities, Journal of the Soil Mechanics and Foundations Division, 94(1), 73-91.
28.Snow, D.T. (1969). Anisotropic permeability of fractured media, Water Resources Research, 5, 1273-1289.
29.Villaescusa, E., and Brown, E.T. (1992). Maximum likelihood estimation of joint size from trace length measurements, Rock Mechanics and Rock Engineering, 25, 67-87.
30.Wei, Z.Q., Egger, P., and Descoeudres, F. (1995). Permeability predictions for jointed rock masses, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3), 251-261.
31.Welch, L. A., and Allen, D. M. (2014). Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow, Hydrogeology Journal, 22(5), 1003-1026.
32.Witherspoon, P. A., Wang, J.C.Y., Iwall, K., and Gale, J.E. (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water resource research, 16, 1016-1024.
33.Wyllie, D. C., and Chris, M. (2004). Rock Slope Engineering Civil and Mining, In: Hoek, E. and Bray, J.W., Eds., Rock Slope Engineering, London.
34.Zienkiewicz, O. C., Humpheson, C., and Lewis, R. W. (1975). Associated and non-associated visco-plasticity and plasticity in soil mechanics, GeÂotechnique, 25(4), 671-689.
35.Zienkiewicz, O. C., and Taylor, R. L. (1989). The Finite Element Method, 4th ed., London.
36.Zhang, Y., Chen, G., Zheng, L., Li, Y., and Zhuang, X. (2013). Effects of geometries on three-dimensional slope stability, Canadian Geotechnical Journal, 50(3), 233-249.
37.台灣世曦工程顧問股份有限公司,2021。109 年山坡地總體檢及設施檢測委託技術服務案,國立陽明交通大學。
38.陳錦清、俞旗文,1994。坪林隧道沿線水力破裂法現地應力量測,地工技術雜誌,46,35-46。
39.翁作新,1987。淺談岩石邊坡分析,地工技術雜誌,19,19-25。
40.張光宗、林怡綾、葉柏村,2017。弱面與邊坡相對方位影響岩坡穩定性之研究,水土保持學報,3(49),2119-2130。
41.鄭允嘉,2006。節理岩體滲透係數之滲透異向性與應力引致異向性,國立中央大學應用地質研究所碩士論文。
42.潘國樑,1998。節理對岩體力學性質的影響,地工技術雜誌,70,107-108。
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明