博碩士論文 110624015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:13.59.217.1
姓名 林頤謙(Yi-Cian Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 考慮地質模型與參數不確定性 對Vs30分布圖之影響—以台北盆地測試區為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 場址效應為地震危害度評估重要影響因素之一。地表下30m內之平均剪力波速 (Vs30) 則是一個評估場址效應的重要參數,於在強地動預估式、地盤分類標準、液化潛能評估等,均有廣泛的應用。過去有許多探討區域性Vs30分布圖測繪之研究,主要方法係根據土壤物性與剪力波速轉換式求得區域鑽孔處之剪力波速與Vs30,再根據各鑽孔位置Vs30值,利用地質統計的方法對Vs30進行空間內插,但上述方法未能直接將地質及物性參數的空間變異性納入考慮。
本研究利用馬可夫隨機場 (Markov random field, MRF) 方法進行地質模型隨機場模擬,並統計各地層物性參數分布特性,以台北盆地測試區進行模擬,再利用前人土壤物性與剪力波速轉換式,計算剪力波速及Vs30,並量化Vs30之不確定性 (包含地質模型與物性參數) ,本研究亦探討有無考慮台北盆地基盤與礫石層空間分布對Vs30計算結果之影響。
研究結果顯示,未考慮台北盆地基盤的空間分布,在分析台北盆地北緣處Vs30時,相較於考慮台北盆地基盤的空間分布,低估了超過40%以上,顯示地質知識對地質模型建模及後續分析之重要性。本研究亦針對地質模型不確定性對Vs30不確定性之影響進行分析,結果顯示當地質模型不確定性越大的地方,其Vs30不確定性也越高,因此未來相關人員在計算Vs30時,地質模型與地質模型不確定性為需要列入考慮之重要因素。
摘要(英) Site effect is one of the important factors in assessing seismic hazards. The average shear wave velocity within the top 30 meters from the ground surface (Vs30) is a significant parameter used to evaluate site effect. It is widely applied in strong ground motion prediction equations, site classification standards, liquefaction potential assessment and etc. Previous studies have extensively explored the mapping of regional Vs30 distributions. The main approach involves determining the shear wave velocity at regional borehole locations based on the transformation functions of soil properties and shear wave velocity, and then interpolating Vs30 values through geological statistical methods. However, these methods do not directly account for the spatial variability of geology and soil physical properties.
This study employs the Markov random field (MRF) method to simulate geological models as stochastic fields and statistically analyze the distribution characteristics of various lithological properties. The study area is the Taipei Basin, where simulations are conducted. Subsequently, utilizing established relationships between soil physical properties and shear wave velocity, this study calculates shear wave velocities and Vs30 values, quantifying the uncertainty associated with Vs30(including geological model and soil physical property uncertainties). This study also discusses the impact of considering the spatial distribution of the basement in the Taipei Basin on the calculation of Vs30.
The results demonstrate that neglecting the spatial distribution of the basement in the Taipei Basin underestimates Vs30 by over 40% when analyzing the northern margin of the basin compared to considering the spatial distribution of the basement. This highlights the importance of incorporating geological knowledge in geological modeling and subsequent analyses. Furthermore, this study analyzes the influence of geological model uncertainty on the uncertainty of Vs30. The findings indicate that locations with greater geological model uncertainty correspond to higher uncertainty in Vs30. Therefore, future practitioners involved in Vs30 calculations should consider both the geological model and its associated uncertainty as crucial factors to be taken into account.
關鍵字(中) ★ 地質模型
★ 地質不確定性
★ 馬可夫隨機場
★ Vs30
★ 台北盆地
關鍵字(英) ★ Geological model
★ Geological uncertainty
★ Markov random field
★ Vs30
★ Taipei Basin
論文目次 摘要 II
Abstract III
致謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
第二章 研究區概述 6
第三章 資料庫建置 12
3.1 地質調查所工程地質探勘資料庫 12
3.2 強震測站場址工程地質資料庫 18
3.3 水文地質資料庫 21
3.4 李錫堤等人 (2002) 為建立基盤高程分布而建置之資料 23
第四章 研究方法 24
4.1 建立台北盆地基盤與松山層下伏之礫石層頂面模型 24
4.1.1 台北盆地基盤高程之判定 24
4.1.2 台北盆地松山層下伏之礫石層頂面高程判定 26
4.1.3 基盤與松山層下伏之礫石層頂面空間內插:克利金法 31
4.2 建立台北盆地測試區地質及物性參數模型與不確定性 38
4.2.1 松山層地層分層判定與各層物性參數統計 39
4.2.2 地層模擬與地層相依之物性參數模擬 46
4.3 台北盆地測試區 VS30計算 57
4.4 量化地質模型不確定性對 VS30不確定性影響之方法 60
第五章 研究結果 61
5.1 台北盆地基盤與松山層下伏之礫石層頂面高程空間內插成果 61
5.2 台北盆地測試區三維地質模型與不確定性 64
5.3 台北盆地測試區物性參數模型與不確定性 71
5.4 台北盆地測試區 VS30空間分布與不確定性 78
第六章 討論 81
6.1 基盤對Vs30分布圖之影響與前人成果之比較 81
6.2 不確定性對 VS30成果之影響 86
第七章 結論 89
參考文獻 90
參考文獻 Allen, T. I., & Wald, D. J. (2009). On the use of high-resolution topographic data as a proxy for seismic site conditions (VS 30). Bulletin of the Seismological Society of America, 99(2A), 935-943.
Anbazhagan, P., Uday, A., Moustafa, S. S., & Al-Arifi, N. S. (2017). Soil void ratio correlation with shear wave velocities and SPT N values for Indo-Gangetic basin. Journal of the Geological Society of India, 89, 398-406.
Barnsley, M. F., Devaney, R. L., Mandelbrot, B. B., Peitgen, H. O., Saupe, D., Voss, R. F., ... & McGuire, M. (1988). The science of fractal images (Vol. 1, p. 71-136). New York: Springer.
Borcherdt, R. D. (2012). VS30–A site-characterization parameter for use in building Codes, simplified earthquake resistant design, GMPEs, and ShakeMaps. In The 15th World Conference on Earthquake Engineering.
Chien, W. Y., Lu, Y. C., Juang, C. H., Dong, J. J., & Hung, W. Y. (2022). Effect of stratigraphic model uncertainty at a given site on its liquefaction potential index: Comparing two random field approaches. Engineering Geology, 309, 106838.
Davis, J. C., & Sampson, R. J. (1986). Statistics and data analysis in geology (Vol. 646). New York: Wiley.
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6), 721-741.
Gong, W., Tang, H., Wang, H., Wang, X., & Juang, C. H. (2019). Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty. Engineering Geology, 259, 105162.
Gong, W., Zhao, C., Juang, C. H., Tang, H., Wang, H., & Hu, X. (2020). Stratigraphic uncertainty modelling with random field approach. Computers and Geotechnics, 125, 103681.
Gong, W., Zhao, C., Juang, C. H., Zhang, Y., Tang, H., & Lu, Y. (2021). Coupled characterization of stratigraphic and geo-properties uncertainties–A conditional random field approach. Engineering Geology, 294, 106348.
Gutenberg, B. (1957). Effects of ground on earthquake motion. Bulletin of the Seismological Society of America, 47(3), 221-250.
Hsu, Y. H., Lu, Y. C., Khoshnevisan, S., Juang, H., & Hwang, J. H. (2022). Influence of geological uncertainty on the design of OWTF monopiles. Engineering Geology, 303, 106621.
Huang, T. C. (1962). The Sungshan Formation in the Taipei Basin: Mem. In Geol. Soc. China (Vol. 1, pp. 133-151).
Imai, T., & Yoshimura, Y. (1970). Elastic wave velocity and soil properties in soft soil. Tsuchito-Kiso, 18(1), 17-22.
Kanai, K., Tanaka, T., Morishita, T., & Osada, K. (1966). Observation of microtremors, XI: Matsushiro earthquake swarm areas. Bull. Earthq. Res. Inst, 44(Part 3).
Lee, C. T., & Tsai, B. R. (2008). Mapping Vs30 in Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 6.
Li, Z., Wang, X., Wang, H., & Liang, R. Y. (2016). Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field. Engineering geology, 201, 106-122.
Lu, Y. C., Liu, L. W., Khoshnevisan, S., Ku, C. S., Juang, C. H., & Xiao, S. H. (2022). A new approach to constructing SPT-CPT correlation for sandy soils. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-17. https://doi.org/10.1080/17499518.2022.2083177.
Lu, Y.C., Yeh, C.H., Chien, W.Y., Juang, C.H., Dong, J.J., & Hung, W.Y. (2023). A new approach for modeling a "stratigraphic and property-dependent" random field (draft). Manuscript submitted for publication.
Nguyen, T.M.L. (2023). Vs30 Mapping Based On Effective Stress And Void Ratio: Using New Transformation Functions And Adding Data From Boreholes Less Than 30 Meters (Master’s thesis). National Central University, Taoyuan, Taiwan.
Ohsaki, Y., & Iwasaki, R. (1973). On dynamic shear moduli and Poisson’s ratios of soil deposits. Soils and Foundations, 13(4), 61-73.
Robertson, P. K., Sasitharan, S., Cunning, J. C., & Sego, D. C. (1995). Shear-wave velocity to evaluate in-situ state of Ottawa sand. Journal of Geotechnical Engineering, 121(3), 262-273.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
Wang, X., Wang, H., & Liang, R. Y. (2018). A method for slope stability analysis considering subsurface stratigraphic uncertainty. Landslides, 15, 925-936.
Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J., & Cheng, C. T. (2016). Probabilistic seismic hazard assessment for Taiwan. Terr. Atmos. Ocean. Sci., 27(3), 325-340.
Wellmann, J. F., & Regenauer-Lieb, K. (2012). Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models. Tectonophysics, 526, 207-216.
Zhao, C., Gong, W., Li, T., Juang, C. H., Tang, H., & Wang, H. (2021). Probabilistic characterization of subsurface stratigraphic configuration with modified random field approach. Engineering Geology, 288, 106138.
Zhu, J., Baise, L. G., & Thompson, E. M. (2017). An updated geospatial liquefaction model for global application. Bulletin of the Seismological Society of America, 107(3), 1365-1385.
丹桂之助(1939)。台北盆地之地質學考察。矢部教授還曆紀念論文集,1,371-380。
吳偉特(1979)。臺北盆地土壤之工程特性。土木水利,5(4),53-64。
吳偉特(1987)。台北盆地之演變過程。地工技術,20,104-112。
吳福泰(1965)。臺北盆地新莊構造地下地質之研究。台灣石油地質,4,271-282。
廖啟雯(1998)。地下地質分散式資料庫建置與應用—以台北盆地為例(碩士論文)。國立中央大學應用地質研究所。
李志剛、秦中天(1998)。台北盆地大地工程特性。土木技術雜誌,6,37-49。
李錫堤、黃慈銘、廖啟雯、陳宏仁(2002)。地下地質資料庫系統的建置與應用—以台北盆地為例。地工技術,89,13-26。
洪如江(1966)。台北盆地各土層土壤之物理特性。國立台灣大學工程學刊,10,194-217。
游能悌、吳文隆、費立沅、紀宗吉、蘇品如、楊智堯、謝文誠(2011年5月4日)。淡水河以西與大漢溪流域的松山層層序。發表於林慧玲、游能悌(主持),ST2第四紀地層[研討會演講]。中華民國地球物理學會與中華民國地質學會100年年會暨學術研討會,臺北市,臺灣。
王執明、鄭穎敏、王源(1978)。臺北盆地之地質及沉積物研究。台灣礦業,30(4),350-380。
中央地質調查所(2011)。臺北盆地的地質與防災。新北市:經濟部中央地質調查所。
郭俊良(2021)。以孔隙比、有效應力與剪力波速關係繪製臺北盆地 Vs30 分布圖(碩士論文)。國立中央大學應用地質研究所。
鄧屬予、王世忠、張致斌、許誠、袁彼得、陳培源(1994)。臺北盆地第四系地層架構。臺灣之第四紀第五次研討會暨臺北盆地地下地質與工程環境綜合調查研究成果發表會論文集,129-135。
鄧屬予、袁彼得、陳培源、彭志雄、賴典章、費立沅、劉桓吉(1999)。臺北盆地堆積層的岩性地層。經濟部中央地質調查所特刊,11,41-66。
黃鎮臺(1987)。臺北市地層大地工程性質分區研究。地工技術,20,71-77。
指導教授 董家鈞 盧育辰(Jia-Jyun Dong Yu-Chen Lu) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明