參考文獻 |
1. Ali, K. M., & Pazzani, M. J. (1996). Error reduction through learning multiple descriptions. Machine learning, 24, 173-202.
2. Biau, G. e. (2012). Analysis of a Random Forests Model.
3. Breiman, L. (1984). Classification and regression trees. Routledge.
4. Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
5. Cha, K.-J., Lee, J.-B., Ozger, M., & Lee, W.-H. (2023). When Wireless Localization Meets Artificial Intelligence: Basics, Challenges, Synergies, and Prospects. Applied Sciences, 13(23), 12734.
6. Chen, L., Xiang, L., Young, M. H., Yin, J., Yu, Z., & van Genuchten, M. T. (2015). Optimal parameters for the Green-Ampt infiltration model under rainfall conditions. Journal of Hydrology and Hydromechanics, 63(2), 93-101.
7. Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323-329. https://doi.org/10.1016/j.ygeno.2012.04.003
8. Cutler, A., & Zhao, G. (2001). Pert-perfect random tree ensembles. Computing Science and Statistics, 33(4), 90-94.
9. Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783-2792.
10. Dietterich, T. G. (2000). Ensemble methods in machine learning. International workshop on multiple classifier systems,
11. Everitt, B. S., & Skrondal, A. (2010). The Cambridge dictionary of statistics.
12. Gray, J., & Shenoy, P. (2000). Rules of thumb in data engineering. Proceedings of 16th International Conference on Data Engineering (Cat. No. 00CB37073),
13. Gu, Y., Wylie, B. K., Boyte, S. P., Picotte, J., Howard, D. M., Smith, K., & Nelson, K. J. (2016). An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data. Remote Sensing, 8(11), 943.
14. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2). Springer.
15. Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and computer sciences, 44(1), 1-12.
16. Ho, T. K. (2002). A data complexity analysis of comparative advantages of decision forest constructors. Pattern Analysis & Applications, 5, 102-112.
17. Huang, J.-C., Tsai, Y.-C., Wu, P.-Y., Lien, Y.-H., Chien, C.-Y., Kuo, C.-F., Hung, J.-F., Chen, S.-C., & Kuo, C.-H. (2020). Predictive modeling of blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Computer methods and programs in biomedicine, 195, 105536.
18. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.
19. Jia, Y., Jin, S., Savi, P., Yan, Q., & Li, W. (2020). Modeling and theoretical analysis of GNSS-R soil moisture retrieval based on the random forest and support vector machine learning approach. Remote Sensing, 12(22), 3679.
20. Khaledian, Y., & Miller, B. A. (2020). Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling, 81, 401-418.
21. Kreuzberger, D., Kühl, N., & Hirschl, S. (2023). Machine learning operations (mlops): Overview, definition, and architecture. IEEE Access.
22. Lin, Y., & Jeon, Y. (2012). Random Forests and Adaptive Nearest Neighbors. Journal of the American Statistical Association, 101(474), 578-590. https://doi.org/10.1198/016214505000001230
23. Liu, D., & Sun, K. (2019). Random forest solar power forecast based on classification optimization. Energy, 187, 115940.
24. Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.
25. Parmenter, R. R., Yates, T. L., Anderson, D. R., Burnham, K. P., Dunnum, J. L., Franklin, A. B., Friggens, M. T., Lubow, B. C., Miller, M., & Olson, G. S. (2003). Small‐mammal density estimation: a field comparison of grid‐based vs. web‐based density estimators. Ecological monographs, 73(1), 1-26.
26. Polikar, R. (2012). Ensemble learning. Ensemble machine learning: Methods and applications, 1-34.
27. Ramos, A. P. M., Osco, L. P., Furuya, D. E. G., Gonçalves, W. N., Santana, D. C., Teodoro, L. P. R., da Silva Junior, C. A., Capristo-Silva, G. F., Li, J., & Baio, F. H. R. (2020). A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture, 178, 105791.
28. Schapire, R. E. (2001). Random Forests.
29. Segal, M., & Xiao, Y. (2011). Multivariate random forests. WIREs Data Mining and Knowledge Discovery, 1(1), 80-87. https://doi.org/10.1002/widm.12
30. Sharifani, K., Amini, M., Akbari, Y., & Aghajanzadeh Godarzi, J. (2022). Operating machine learning across natural language processing techniques for improvement of fabricated news model. International Journal of Science and Information System Research, 12(9), 20-44.
31. Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics. Principles and procedures of statistics.
32. Sutton, C. D. (2005). Classification and regression trees, bagging, and boosting. Handbook of statistics, 24, 303-329.
33. Tramblay, Y., & Seguí, P. Q. (2022). Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme. Natural Hazards and Earth System Sciences, 22, 1325-1334.
34. Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern Recognition, 44(2), 330-349. https://doi.org/10.1016/j.patcog.2010.08.011
35. Willcock, S., Martínez-López, J., Hooftman, D. A., Bagstad, K. J., Balbi, S., Marzo, A., Prato, C., Sciandrello, S., Signorello, G., & Voigt, B. (2018). Machine learning for ecosystem services. Ecosystem services, 33, 165-174.
36. Xie, X., Wu, T., Zhu, M., Jiang, G., Xu, Y., Wang, X., & Pu, L. (2021). Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecological Indicators, 120, 106925.
37. Yaseen, Z. M. (2021). An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere, 277, 130126.
38. Zhang, Q.-y., Chen, W.-w., & Zhang, Y.-m. (2019). Modification and evaluation of Green–Ampt model: Dynamic capillary pressure and broken-line wetting profile. Journal of Hydrology, 575, 1123-1132.
39. Zounemat-Kermani, M., Batelaan, O., Fadaee, M., & Hinkelmann, R. (2021). Ensemble machine learning paradigms in hydrology: A review. Journal of Hydrology, 598, 126266.
40. Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting.
41. Carranza, C., Nolet, C., Pezij, M., & van der Ploeg, M. (2021). Root zone soil moisture estimation with Random Forest. Journal of hydrology, 593, 125840.
42. Pekel, E. (2020). Estimation of soil moisture using decision tree regression. Theoretical and Applied Climatology, 139(3), 1111-1119.
43. 許家寅,2023。利用地電阻影像法推估降雨入滲範圍:以臺中霧峰農地為例。國立中央大學地球科學學系地球物理研究所碩士論文。
44. 陳均,2023。耦合水熱電模式優化降雨入滲模擬。國立中央大學地球科學學系地球物理研究所碩士論文。
45. 陳建志等人,2023。人工智慧架構的地球環境災害防減抗策略TWAI(湍)。國家科學及技術委員會。
46. 簡均任,2013。乾旱指標結合氣候統計降尺度預報於石門水庫供水之乾旱預警應用。國立中央大學水文與海洋科學研究所碩士論文。
47. 黃琮智,2019。隨機森林結合基因演算法於鐵達尼分類問題。臺北市立大學資訊科學系研究所碩士論文。
48. 許淨嵐,2023。兩階段基於成本敏感學習框架之客端品質檢測於 TFT-LCD 產業。國立清華大學工業工程與工程管理研究所碩士論文。
49. 國立中興大學土壤科學系,1976。臺中縣南投縣土壤調查報告: Retrieved from 臺中市南區
50. 行政院農業委員會農業試驗所,2022。發展及應用二維地電阻層析成像技術推估農地之土壤水文特性。財團法人工業技術研究院。
51. 經濟部水利署,2020。水文年報。經濟部水利署。https://gweb.wra.gov.tw/wrhygis/ebooks/getebook.asp
52. 莊啟宏,2023。深度學習-使用TensorFlow 2.x。全華圖書股份有限公司,第六章-神經網路的優化與調教。
53. 行政院農業委員會農業試驗所,2016。農業試驗所土壤資料供應查詢平台。Retrieved from https://tssurgo.tari.gov.tw/Tssurgo/Map
54. 交通部中央氣象局 & 行政院農業委員會,2023。農業氣象觀測網監測系統。 Retrieved from https://agr.cwb.gov.tw/NAGR/history/station_hour |