博碩士論文 110825013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.149.27.125
姓名 呂宛宜(Wen-Yi Lu)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 語句階層的聽覺語言理解機制:電生理學之關聯性和口語中文
(Auditory Language Comprehension Mechanism at Sentence Level:Electrophysiological Correlation and Spoken Mandarin Chinese)
相關論文
★ 外語效應在決策的應用機制★ 語境多樣性與語意多樣性對中文字詞辨識影響之事件相關電位研究
★ 大腦在語言理解過程中如何進行同步振動和產生聲音★ 用回歸方法分析文字與動詞文法辨認的腦電資料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,數個探討口語聽覺理解機制的電生理學假說,皆以多個事件相關電位(Event-Related Potential,ERP)之研究為主要基礎,致力於探討大腦理解口語語言的腦神經電生理學假說。可惜的是相較其他語言,目前較缺乏以中文為語言背景基礎的相關研究和假說,而不同語言之間對於語言組成要素(linguistic components)的編碼型式也是需要納入口語聽覺理解機制的重要向度,故本研究以台灣日常對話情境和語言文化為背景,目的為探討中文獨特或與其他語言共有的大腦口語聽覺理解機制,重新思考並檢驗近年來涉及口語聽覺理解機制的電生理學假說和觀點。
Friederici 於2011 年指出大腦的各種語言處理歷程無疑是於時間歷程中展開的,基於此論點和本研究目的,使用高時間解析度的腦電波儀器(Electroencephalography,EEG)探討在時間向度中展開的大腦聽覺理解歷程,並輔以圖片指認作業和語句內容合理度判斷作業。本研究一共分析了27 位年紀介於20 至53 歲之健康成人的腦電波數據和行為數據,探討語句複雜度效果、語句異常效果和口語韻律效果對於口語聽覺理解機制的影響。
本研究結果顯示,中文的語句複雜度、語句合理性和口語韻律,對於口語語言理解機制有很重要且顯著的影響。當語句結構及內容異常、口語韻律豐富度不足等任一因素,同時或獨立出現在聽覺訊息中,會導致認知負擔增加並誘發出與認知資源相關的事件相關電位—P200、P3a、P3b,且後續引發的事件相關電位的種類、潛伏時長和頭皮分布也不盡相同。此外,不論語句複雜或是語句異常與否,只要口語韻律豐富度夠高,皆會於早期誘發出ELAN(Early Left Anterior Negativity)的事件相關電位。而
相較以英語和德語為基礎的語言腦電波研究,本研究之中文單音節語言(monosyllabic languages)的語言組成特性,可能為ELAN 在口語韻律自然豐富的語句異常效果中、N400 和LAN(Left Anterior Negativity)在口語韻律自然豐富的語句複雜度效果中,潛
伏時長更短的原因之一。
於神經科學領域而言,本研究揭示在較高語言層次-語句階層的聽覺理解歷程中,認知和韻律的重要性,並在以中文為基礎的語言腦電波研究中,重現了ELAN和LAN兩個事件相關電位。於臨床醫學介入而言,本研究揭示出大腦聽覺理解機制的錯綜複雜性,並以此建議臨床的重複性經顱磁刺激(Repetitive Transcranial Magnetic Stimulation,rTMS)治療,未來須納入全面性的語言能力評估,並針對個別的受損區域和受損功能,搭配傳統語言治療,給予相對應的治療處置。於臨床語言治療介入而言,其一,本研究建議臨床語言治療須重視認知功能對於神經發展性疾病、後天神經損傷疾病和神經退化性疾病的重要性,當訊息理解過程中或是溝通情境中出現任一語言組成要素的異常或扭曲,認知功能將會成為個案能否完全理解聽覺訊息和能否從中學習的重要指標;其二,本研究強調臨床語言治療中,語言學習環境設置、口語訊息複雜度和口語韻律掌控能力對於語言學習和理解聽覺訊息的重要性。未來的研究建議以本研究為基石,進一步探討各年紀族群或各種腦神經相關障礙之間的口語聽覺理解機制的異同,並建立相對應的腦波資料庫,除了可以更了解各年紀和各神經相關障礙在口語聽覺理解歷程上的異同並制定出更合適的治療計劃,也可以將其應用於臨床診斷中,與臨床評估相結合,及早做出語言相關的臨床診斷並及早給予適宜的醫療處置
和介入。
摘要(英) Several electrophysiological studies investigating spoken auditory comprehension have recently focused on various event-related potentials (ERPs) studies to explore the electrophysiological hypotheses regarding how the human brain processes spoken languages. Unfortunately, the limited number of studies and hypotheses is based on the Mandarin
Chinese linguistic background compared to other languages. Moreover, understanding the decoding patterns of linguistic components across different languages is essential for elucidating the mechanisms of spoken auditory language comprehension. Consequently, the present study is situated within everyday Taiwanese conversations and language culture. The study aims to investigate the distinct and shared mechanisms of auditory language comprehension with other languages while re-evaluating and examining the electrophysiological hypotheses and perspectives related to this process.
Friederici (2011) indicated that the processes involved in comprehending multiple languages unfold over a temporal scale. Based on this premise and the objectives of the
current study, we employed electroencephalography (EEG) with high temporal resolution to investigate auditory language comprehension. This was complemented by a picturepointing
task and a plausibility judgment task involving sentences. The study analyzed electrophysiological and behavioral data from 27 healthy adults aged 20 to 53 to investigate
the effects of sentential complexity, sentence anomaly, and linguistic prosody on auditory language comprehension.
The results indicated that the sentential complexity, sentential plausibility, and linguistic prosody in Mandarin Chinese have a crucial and significant influence on the auditory language comprehension mechanism. First, when these factors involved abnormal sentential structure and limited richness of linguistic prosody — whether independently or
concurrently — these abnormalities and limitations led to increased cognitive load. They elicited the ERPs related to the cognitive resources, specifically P200, P3a, and P3b.
Furthermore, the subsequent ERPs also differed in type, latency, and scalp distribution. Second, regardless of whether the sentences were complex or anomalous, stimuli would elicit the Early Left Anterior Negativity (ELAN) component if the linguistic prosody was sufficiently rich and natural. Moreover, in comparison to other electrophysiological research in the language domain focused on English and German, the constituent properties
of linguistic components in monosyllabic languages, such as Mandarin Chinese in this present study, may contribute to a shorter latency than typically observed, including the ELAN components in the anomalous effect of natural speech observed in the present study, as well as the N400 and Left Anterior Negativity (LAN) components in the complexity effect of natural speech observed in the present study.
The present study elucidates the intricacy of the auditory language comprehension mechanism in neuroscience. Based on these findings, it is suggested that Repetitive Transcranial Magnetic Stimulation (rTMS) as a clinical intervention should include a comprehensive language assessment and tailor the protocol and localization to address the specific deficient regions and functions in the future. Furthermore, the focused language functions in the rTMS intervention should align with the objectives of speech-language therapy. In clinical speech-language therapy, this study first emphasizes the significance of
cognitive function in neurodevelopmental, acquired neurological, and neurodegenerative disorders. When any linguistic component is abnormal or distorted in auditory language comprehension processing or communicative contexts, the cognitive function becomes essential for individuals to understand and learn the language thoroughly. Second, the
study underscores the importance of the language learning environment, the complexity of spoken messages, and the ability to control linguistic prosody. These factors are crucial for comprehending spoken messages and effective language learning. The present study suggests that future research should further explore the similarities and differences in auditory language comprehension mechanisms among various age groups and individuals with neurological disorders. Furthermore, this study also suggests establishing the corresponding brainwave data, which will assist speech-language pathologists in developing more suitable treatment plans. Additionally, this data can be applied in clinical assessments and diagnoses alongside behavioral and language evaluations. Integrating clinical
assessments and diagnoses will facilitate earlier and more accurate language-related diagnoses, enabling timely medical intervention.
關鍵字(中) ★ 語言理解
★ 口語語言理解
★ 語句處理歷程
★ 中文
★ 解碼
★ 腦電波儀器
★ 事件相關電位
關鍵字(英) ★ auditory language comprehension
★ spoken language understanding
★ sentence processing
★ Madarin Chinese
★ decoding
★ EEG
★ ERP
論文目次 Chinese Abstract i
English Abstract iii
Acknowledgments v
Table of Contents vii
List of Figures x
List of tables xi
1 Introduction 1
1.1 Spoken messages and communication . . . 1
1.2 Components of spoken messages . . . . . 5
1.2.1 Form component of linguistic elements . . 5
1.2.2 Content component of linguistic elements . . 7
1.2.3 Use component of linguistic elements . . . . 9
1.2.4 Prosody component of extralinguistic elements . . 10
1.3 Different language systems . . . . . . . . . . . . 11
1.4 Electrophysiological explorations on language comprehension . . . . . . . . 14
1.5 Neuroimaging explorations on language comprehension . . 20
1.6 Research aims and questions addressed . . . . . 21
2 Methods and EEG experiment 23
2.1 Participants . . . . . . . . . . . . . . . . . . 23
2.2 Materials . . . . . . . . . . . . . . . . . . . 25
2.2.1 Materials of sentences . . . . . . . . . . . 25
2.2.2 Materials of speech sounds . . . . . . . . 29
2.2.3 Materials of pictures . . . . . . . . . . . 32
2.3 Procedure . . . . . . . . . . . . . . . . . 33
2.4 EEG recording and pre-processing . . . . . . 34
2.5 Data analysis . . . . . . . . . . . . . . . 35
3 Results 38
3.1 Behavioral data . . . . . . . . . . . . . . 38
3.1.1 Picture pointing task . . . . . . . . . . 38
3.1.2 Plausibility judgement task . . . . . . . 39
3.2 Electrophysiological data . . . . . . . . . 41
3.2.1 Complexity effect of plain and natural speech . . 42
3.2.2 Anomalous effect of plain and natural speech . . 46
4 Discussion 48
4.1 Complexity effect of natural and plain speech . . . 48
4.1.1 ELAN in the complexity effect of natural speech . . 48
4.1.2 N400 in the complexity effect of natural speech . . 49
4.1.3 LAN in the complexity effect of natural speech . . 51
4.1.4 P3b in the complexity effect of plain speech . . . 53
4.1.5 P600 in the complexity effect of plain speech . . 56
4.2 Anomalous effect of natural and plain speech . . . 59
4.2.1 ELAN in the anomalous effect of natural speech . . 59
4.2.2 No N400 in the anomalous effect . . . . . . . . . 61
4.2.3 P3b in the anomalous effect of natural speech . . 62
4.2.4 P600 in the anomalous effect of natural speech . . 63
4.2.5 P200 in the anomalous effect of plain speech . . . 65
4.2.6 P3a in the anomalous effect of plain speech . . . 66
4.2.7 P345 in the anomalous effect of plain speech . . . 67
5 Conclusion 70
Bibliography 74
參考文獻 [1] Alekseeva, M., Myachykov, A., Bermudez-Margaretto, B., & Shtyrov, Y. (2024). Morphosyntactic prediction in automatic neural processing of spoken language: EEG evidence. Brain Research, 1836, 148949.
[2] Allen, R. J., Waterman, A. H., Yang, T. X., & Jaroslawska, A. J. (2023). Working memory in action: Remembering and following instructions. In R. H. Logie, Z.
Wen, S. E. Gathercole, N. Cowan, and R. W. Engle (eds.), Memory in science for society: There is nothing as practical as a good theory. Oxford University Press.
[3] Amberber, M., Baker, B., & Harvey, M. (Eds.). (2010). Complex predicates: Crosslinguistic perspectives on event structure. Cambridge University Press.
[4] Baddeley, A. D., & Hitch, G. (1974). Working memory. The psychology of learning and motivation, 8, 47–89.
[5] Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11) 417-423.
[6] Baggio, G., & Hagoort, P. (2011). The balance between memory and unification in semantics: A dynamic account of the N400. Language and Cognitive Processes, 26(9), 1338-1367.
[7] Barber, H., & Carreiras, M. (2005). Grammatical gender and number agreement in Spanish: An ERP comparison. Journal of cognitive neuroscience, 17(1), 137-153.
[8] Belyk, M., & Brown, S. (2014). Perception of affective and linguistic prosody: an ALE meta-analysis of neuroimaging studies. Social cognitive and affective neuroscience, 9(9), 1395-1403.
[9] Bemis, D. K., & Pylkkanen, L. (2011). Simple composition: A magnetoencephalography investigation into the comprehension of minimal linguistic phrases. Journal of Neuroscience, 31(8), 2801-2814.
[10] Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300.
[11] Blake, B. J. (2001). Case. Cambridge University Press.
[12] Bloom, L., & Lahey, M. (1978). Language development and language disorders. John Wiley & Sons.
[13] Bochner, S., & Jones, J. (2008). Child language development: Learning to talk (2th ed.). John Wiley & Sons.
[14] Bornkessel, I. (2002). The argument dependency model: A neurocognitive approach to incremental interpretation [Doctoral dissertation, Max Planck Institute of Cognitive Neuroscience Leipzig].
[15] Bornkessel, I., & Schlesewsky, M. (2006). The extended argument dependency model: a neurocognitive approach to sentence comprehension across languages.
Psychological review, 113(4), 787.
[16] Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2008). An alternative perspective on
“semantic P600”effects in language comprehension. Brain research reviews, 59(1), 55-73.
[17] Boustani, N., Pishghadam, R., & Shayesteh, S. (2021). Multisensory input modulates P200 and L2 sentence comprehension: a one-week consolidation phase. Frontiers in Psychology, 12, 746813.
[18] Brennan, J., & Pylkkanen, L. (2012). The time-course and spatial distribution of brain activity associated with sentence processing. Neuroimage, 60(2), 1139-1148.
[19] Brodhun, C., Borelli, E., & Weiss, T. (2024). Neural correlates of word processing influenced by painful primes. Plos one, 19(1), e0295148.
[20] Brouwer, H., Fitz, H., & Hoeks, J. C. J. (2012). Getting real about semantic illusions: rethinking the functional role of the P600 in language comprehension.
Brain Research, 1446, 127–143.
[21] Brouwer, H., & Hoeks, J. C. (2013). A time and place for language comprehension: mapping the N400 and the P600 to a minimal cortical network. Frontiers in human neuroscience, 7, 758.
[22] Brouwer, H., Crocker, M. W., Venhuizen, N. J., & Hoeks, J. C. (2017). A neurocomputational model of the N400 and the P600 in language processing. Cognitive science, 41, 1318-1352.
[23] Buchsbaum, B. R. (2010). Neural Basis of Working Memory. In George F. Koob,
Michel Le Moal & Richard F. Thompson (Eds.), Encyclopedia of Behavioral Neuroscience(pp. 334-341). Elsevier Science.
[24] Buchsbaum, B. R. (2015). Working Memory and Language. In G. Hickok & S. L. Small (Eds.), Neurobiology of Language (pp. 863-875). Academic Press.
[25] Burkhardt, P. (2007). The P600 reflects cost of new information in discourse memory. Neuroreport, 18(17), 1851-1854.
[26] Casenhiser, D., & Bencini, G. M. (2015). Argument structure constructions. In Dabrowska, E., & Divjak, D. (Eds.), Handbook of cognitive linguistics (pp. 296-322).
[27] Chao, Y. R. (1968). A Grammar of Spoken Chinese. University of California Press.
[28] Chai, W. J., Abd Hamid, A. I., & Abdullah, J. M. (2018). Working memory from the psychological and neurosciences perspectives: a review. Frontiers in psychology, 9, 401.
[29] Chinese Knowledge and Information Processing Lab (1993). Jishu baogao no. 93-05: zhongwen cilei fenxi [Technical Report no. 93-05: Part-of-speech analysis] (3rd ed.) Institute of Information Science, Academia Sinica.
[30] Chinese Knowledge and Information Processing Lab (2015). Technical Report no. 15-01: Semantic Roles and Semantic Role Labeling Institute of Information Science, Academia Sinica.
[31] Chomsky, N. (1956). Three models for the description of language. IRE Transactions on information theory, 2(3), 113-124.
[32] Chomsky, N. (1957). Syntactic structures. Mouton.
[33] Chung, R. F. (2006). Dangdai yuyanxue gailun [Introduction to Modern Linguistics]. Wu-Nan Culture Enterprise.
[34] Ciaccio, L. A., Burki, A., & Clahsen, H. (2023). Inter-individual variability in morphological processing: An ERP study on German plurals. Journal of Neurolinguistics,
67, 101138.
[35] Conlen, M. M. (2016). A Linguistic Comparison: Stress-timed and syllable-timed languages and their impact on second language acquisition. [Honors College Thesis,
Classical and Modern Languages, Literatures, and Cultures]. Wayne State University.
[36] Coulson, S., King, J. W., & Kutas, M. (1998). Expect the unexpected: Event-related
brain response to morphosyntactic violations. Language and cognitive processes, 13(1), 21-58.
[37] Crosson, B., Rodriguez, A. D., Copland, D., Fridriksson, J., Krishnamurthy, L. C., Meinzer, M., ... & Leff, A. P. (2019). Neuroplasticity and aphasia treatments: new approaches for an old problem. Journal of Neurology, Neurosurgery & Psychiatry, 90(10), 1147-1155.
[38] Davidson, A., & Souza, P. (2024). Relationships Between Auditory Processing and
Cognitive Abilities in Adults: A Systematic Review. Journal of Speech, Language, and Hearing Research, 67(1), 296-345.
[39] Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological correlates of phonological processing: a cross-linguistic study. Journal of cognitive neuroscience, 12(4), 635-647.
[40] Delogu, F., Brouwer, H., & Crocker, M. W. (2019). Event-related potentials index lexical retrieval (N400) and integration (P600) during language comprehension. Brain and cognition, 135, 103569.
[41] DeLong, K. A., & Kutas, M. (2016). Hemispheric differences and similarities in comprehending more and less predictable sentences. Neuropsychologia, 91, 380-393.
[42] Denes, P. B., & Pinson, E. N. (1973). The Speech Chain: The Physics and Biology of Spoken Language. Anchor Press.
[43] Denes, P. B., & Pinson, E. N. (2007). The Speech Chain: The Physics and Biology of Spoken Language (2nd ed.). W.H. Freeman and Company.
[44] Diesch, E., Eulitz, C., Hampson, S., & Ross, B. (1996). The neurotopography of vowels as mirrored by evoked magnetic field measurements. Brain and language,53(2), 143-168.
[45] Dikker, S., Rabagliati, H., & Pylkkanen, L. (2009). Sensitivity to syntax in visual cortex. Cognition, 110(3), 293-321.
[46] Dikker, S., Rabagliati, H., Farmer, T. A., & Pylkkanen, L. (2010). Early occipital sensitivity to syntactic category is based on form typically. Psychological Science, 21(5), 629-634.
[47] Duncan-Johnson, C. C., & Donchin, E. (1982). The P300 component of the eventrelated brain potential as an index of information processing. Biological psychology, 14(1-2), 1-52.
[48] Durrant, D., & Lovrinic , J. H. (1995). Bases of Hearing Sciences (3rd ed.). Williams & Wilkins.
[49] Federmeier, K. D., Wlotko, E. W., De Ochoa-Dewald, E., & Kutas, M. (2007).Multiple effects of sentential constraint on word processing. Brain research, 1146,75-84.
[50] Ferlazzo, F., Fagioli, S., Di Nocera, F., & Sdoia, S. (2008). Shifting attention across
near and far spaces: Implications for the use of hands-free cell phones while driving. Accident Analysis & Prevention 40 (6), 1859 1864.
[51] Ferreira, F., Bailey, K. G., & Ferraro, V. (2002). Good-enough representations in language comprehension. Current directions in psychological science, 11(1), 11-15.
[52] Flick, G., Oseki, Y., Kaczmarek, A. R., Al Kaabi, M., Marantz, A., & Pylkkanen, L.(2018). Building words and phrases in the left temporal lobe. Cortex, 106, 213-236.
[53] Fox, A. (2002). Prosodic features and prosodic structure: The phonology of suprasegmentals. OUP Oxford.
[54] Friederici, A. D., Von Cramon, D. Y., & Kotz, S. A. (1999). Language related brain potentials in patients with cortical and subcortical left hemisphere lesions. Brain,122(6), 1033-1047.
[55] Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in cognitive sciences, 6(2), 78-84.
[56] Friederici, A. D., Hahne, A., & Saddy, D. (2002). Distinct neurophysiological patterns reflecting aspects of syntactic complexity and syntactic repair. Journal of psycholinguistic research, 31, 45-63.
[57] Friederici, A. D., & Kotz, S. A. (2003). The brain basis of syntactic processes:functional imaging and lesion studies. Neuroimage, 20, S8-S17.
[58] Friederici, A. D., Ruschemeyer, S. A., Hahne, A., & Fiebach, C. J. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension:localizing syntactic and semantic processes. Cerebral cortex, 13(2), 170-177.
[59] Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proceedings of the National Academy of Sciences.
[60] Friederici, A. D., & Weissenborn, J. (2007). Mapping sentence form onto meaning: The syntax–semantic interface. Brain research, 1146, 50-58.
[61] Friederici, A. D., & Wartenburger, I. (2010). Language and brain. Wiley Interdisciplinary Reviews: Cognitive Science, 1(2), 150-159.
[62] Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological reviews, 91(4), 1357-1392.
[63] Friedrich, C. K. (2003). Prosody and spoken word recognition: Behavioral and ERP
correlates [Doctoral dissertation, Max Planck Institute of Cognitive Neuroscience Leipzig].
[64] Frisch, S., Beim Graben, P., & Schlesewsky, M. (2004). Parallelizing grammatical functions: P600 and P345 reflect different cost of reanalysis. International Journal of Bifurcation and Chaos, 14(02), 531-549.
[65] Fry, D. B. (1955). Duration and intensity as physical correlates of linguistic stress. The Journal of the Acoustical Society of America, 27(4), 765-768.
[66] Fry, D. B. (1958). Experiments in the perception of stress. Language and speech, 1(2), 126-152.
[67] Fujisaki, H., & Hirose, K. (1984). Analysis of voice fundamental frequency contours for declarative sentences of Japanese. Journal of the Acoustical Society of Japan(E), 5(4), 233-242.
[68] Gasiorek, J., & Aune, R. Kelly. (2018). Message Processing: The Science of Creating Understanding. University of Hawaii Manoa.
[69] Geeraerts, D., & Cuyckens, H. (Eds.). (2007). The Oxford handbook of cognitive linguistics. OUP USA.
[70] Goldberg, A. E. (1992). Argument structure constructions. University of California, Berkeley.
[71] Gray, C. (2010). The New Social Story Book (10th Anniversary ed.). Future Horizons.
[72] Grober, E. H., Beardsley, W., & Caramazza, A. (1978). Parallel function strategy in pronoun assignment. Cognition, 6(2), 117-133.
[73] Gussenhoven, C. (2004). The phonology of tone and intonation. Cambridge University Press.
[74] Hagoort, P., Brown, C., & Groothusen, J. (1993). The syntactic positive shift (SPS) as an ERP measure of syntactic processing. Language and cognitive processes, 8(4), 439-483.
[75] Hagoort, P. (2008). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1055-1069.
[76] Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In The cognitive neurosciences (4th ed.).(pp. 819-836). MIT press.
[77] Hall, S. (1980). ”Encoding / Decoding.” In: S. Hall, D. Hobson, A. Lowe, and P. Willis (eds). Culture, Media, Language: Working Papers in Cultural Studies, 1972–79. London: Hutchinson, pp. 128–138.
[78] Hamilton, L. S., Oganian, Y., Hall, J., & Chang, E. F. (2021). Parallel and distributed encoding of speech across human auditory cortex. Cell, 184(18), 4626-4639.
[79] Han, Z., & Bi, Y. (2009). Oral spelling and writing in a logographic language: Insights from a Chinese dysgraphic individual. Brain and language, 110(1), 23-28.
[80] Hartmann, K. (2008). Focus and emphasis in tone and intonational languages. The discourse potential of underspecified structures, 389-411.
[81] Henderson, L. M., Baseler, H. A., Clarke, P. J., Watson, S., & Snowling, M. J. (2011). The N400 effect in children: Relationships with comprehension, vocabulary and decoding. Brain and Language, 117(2), 88-99.
[82] Hendrickson, K., Love, T., Walenski, M., & Friend, M. (2019). The organization of words and environmental sounds in the second year: Behavioral and electrophysiological evidence. Developmental science, 22(1), e12746.
[83] Hirst, D., & Cristo, A. D. (Eds.). (1998). Intonation systems: A survey of Twenty Languages. Cambridge University Press.
[84] Hoeks, J. C., Stowe, L. A., & Doedens, G. (2004). Seeing words in context: the interaction of lexical and sentence level information during reading. Cognitive brain research, 19(1), 59-73.
[85] Holcomb, P. J., Coffey, S. A., & Neville, H. J. (1992). Visual and auditory sentence processing: A developmental analysis using event?related brain potentials. Developmental Neuropsychology, 8(2-3), 203-241.
[86] Huang, C. R., & Chen, K. J. (1998). CKIP no. 98-04: Zhongyang yanjiuyuan pingheng yuliaoku [CKIP no. 98-04: Sinica Corpus]. Information Processing Group, Academia Sinica.
[87] Huettig, F., Audring, J., & Jackendoff, R. (2022). A parallel architecture perspective on pre-activation and prediction in language processing. Cognition, 224, 105050.
[88] Hyman, L. M. (2006). Word-prosodic typology. Phonology, 23(2), 225-257.
[89] James, A. L. (1940). Speech signals in telephony. Sir I. Pitman & sons, Limited.
[90] Jones, D. (1976). An Outline of English Phonetics. (9th ed.). Cambridge University Press.
[91] Kaan, E., Harris, A., Gibson, E., & Holcomb, P. (2000). The P600 as an index of syntactic integration difficulty. Language and cognitive processes, 15(2), 159-201.
[92] Kamarudin, K. (2020). Speech Acts Analysis and Its Application Within the Interlocutors’Communication.
Cordova Journal: languages and culture studies, 10(1),
67-83.
[93] Kim, A., & Osterhout, L. (2005). The independence of combinatory semantic processing:
Evidence from event-related potentials. Journal of memory and language, 52(2), 205-225.
[94] Kim, B., Lee, J., & Lee, G. G. (2010). Fujisaki Model Based Intonation Modeling for Korean TTS System. In Ubiquitous Computing and Multimedia Applications: International Conference, UCMA 2010, Miyazaki, Japan, June 23-25, 2010. Proceedings 1 (pp. 103-111). Springer Berlin Heidelberg.
[95] Kim, H., Hwang, H., & Rah, Y. (2017). Young EFL students’reliance on pathbreaking verbs in the use of English argument structure constructions. Journal of Cognitive Science, 18(3), 1-34.
[96] Kimmelman, V. (2015). Topics and topic prominence in two sign languages. Journal of Pragmatics, 87, 156-170.
[97] Klingberg, T. (2010). Training and plasticity of working memory. Trends in cognitive sciences, 14(7), 317-324.
[98] Kolk, H. H., Chwilla, D. J., Van Herten, M., & Oor, P. J. (2003). Structure and limited capacity in verbal working memory: A study with event-related potentials. Brain and language, 85(1), 1-36.
[99] Korhonen, A., & Briscoe, T. (2004). Extended lexical-semantic classification of English verbs. In Proceedings of the Computational Lexical Semantics Workshop at HLT-NAACL 2004 (pp. 38-45).
[100] Kroon, S. (2003). Mother tongue and mother tongue education. In World Yearbook of Education 2003 (pp. 47-60). Routledge.
[101] Kuperberg, G. R., Sitnikova, T., Caplan, D., & Holcomb, P. J. (2003). Electrophysiological
distinctions in processing conceptual relationships within simple sentences. Cognitive brain research, 17(1), 117-129.
[102] Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: Challenges to syntax. Brain research, 1146, 23-49.
[103] Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual review of psychology, 62, 621-647.
[104] Leckey, M., & Federmeier, K. D. (2020). The P3b and P600 (s): Positive contributions to language comprehension. Psychophysiology, 57(7), e13351.
[105] Lee, L. S. (1998). Structural features of Chinese language –Why Chinese spoken language processing is special and where we are. In Proc. International Symposium on Chinese Language Processing [ISCSLP] (Vol. 98).
[106] Lee, S.-W., & Chen, C.-M. (1993). Zhongwen kouyu yu shuxieyu de bijiao yanjiu [A Comparative Study of Chinese Spoken and Written Language]. Teaching and Research, 15, 63–96.
[107] Levin, B. (1993). English Verb Classes and Alternations: A Preliminary Investigation. University of Chicago Press.
[108] Li, C. N., & Thompson, S. A. (1976). Subject and Topic: A New Typology of Language. In Charles N. Li (ed.), Subject and Topic. Academic Press (pp. 457–489).
[109] Li, C. N., & Thompson, S. A. (1989). Mandarin Chinese: A functional reference grammar. Univ of California Press.
[110] Li, C. N., & Thompson, S. A. (2022). Mandarin Chinese: A Functional Reference Grammar (S. F. Huang, Trans.; Rev. ed.). Crane Publishing Co., Ltd.
[111] Li, J. (2018). Temporal hierarchy of intonation and tone processing in Mandarin Chinese. PsyArXiv.
[112] Li, Y., Tang, C., Lu, J., Wu, J., & Chang, E. F. (2021). Human cortical encoding of pitch in tonal and non-tonal languages. Nature communications, 12(1), 1-12.
[113] Liao, C. H., & Lau, E. (2020). Enough time to get results? An ERP investigation of prediction with complex events. Language, Cognition and Neuroscience, 35(9), 1162-1182.
[114] Lijffijt, M., Lane, S. D., Meier, S. L., Boutros, N. N., Burroughs, S., Steinberg, J. L., ... & Swann, A. C. (2009). P50, N100, and P200 sensory gating: relationships with behavioral inhibition, attention, and working memory. Psychophysiology, 46(5), 1059-1068.
[115] Lin, P.- J. (2002). Shiyong shiyingxing qujian moxing yu yuzhe shuohua suduzhi tiaozheng [Adaptive duration modeling for speaker adaptation of speaking rate] [Unpublished master’s thesis]. Department of science and information engineering, National Cheng Kung University.
[116] Liu, M. J., & Xu, H. L. (1994, August). Zhongwen dongcide chuli: cikuxiaozu dongci xitong ji dongci dacidian zhi bijiao [The Processing of Chinese Verbs: a comparison of the CKIP classification and the Chinese Verb Dictionary]. In Proceedings of Rocling VII Computational Linguistics Conference VII (pp. 91-110).
[117] Luraghi, S., & Parodi, C. (2008). Key terms in syntax and syntactic theory. Bloomsbury Publishing.
[118] Maffongelli, L., Antognini, K., & Daum, M. M. (2018). Syntactical regularities of action sequences in the infant brain: When structure matters. Developmental Science, 21(6), e12682.
[119] Maran, M., Numssen, O., Hartwigsen, G., & Zaccarella, E. (2022). Online neurostimulation of Broca’s area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Frontiers in Psychology, 13.
[120] Martin, D., & Miller, C. (2012). Speech and language difficulties in the classroom (2th ed.). David Fulton Publishers.
[121] Martinez, J. L., & De Vera, P. V. (2019). Sociolinguistic Competence of Foreign National College Students. Online Submission, 21, 291-336.
[122] McCornack, S. (2010). Reflect & Relate: An Introduction to Interpersonal Communication(2nd ed.). Bedford/St. Martin’s.
[123] McCornack, S., & Morrison, K. (2018). Reflect & Relate: An Introduction to Interpersonal Communication (5th ed.). Bedford/St. Martin’s.
[124] McQuail, D., & Windahl, S. (2015). Communication Models for the Study of Mass Communications (2nd ed.). Routledge.
[125] McQueen, J. M., & Dilley, L. C. (2020). Prosody and spoken-word recognition. In Gussenhhoven, C., & Chen, A. (Eds.), The Oxford handbook of language prosody(pp. 509-521). Oxford University Press.
[126] Melynyte, S., Wang, G. Y., & Griskova-Bulanova, I. (2018). Gender effects on auditory P300: A systematic review. International Journal of Psychophysiology, 133, 55-65.
[127] Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81.
[128] Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the Structure of Behavior. Henry Holt and Company.
[129] Mixdorff, H., Fujisaki, H., Chen, G. P., & Hu, Y. (2003). Towards the automatic extraction of Fujisaki model parameters for Mandarin. In Eighth European Conference on Speech Communication and Technology.
[130] Molinaro, N., Barber, H. A., Caffarra, S., & Carreiras, M. (2015). On the left anterior negativity (LAN): The case of morphosyntactic agreement. Cortex, 66(156-159), 8.
[131] National Center for Environmental Health (2019, October 7). What Noises Cause Hearing Loss? Centers for Disease Control and Prevention.
[132] Nespor, M., Shukla, M., & Mehler, J. (2011). Stress timed vs. syllable timed languages. The Blackwell companion to phonology, 1-13.
[133] Neville, H., Nicol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically based sentence processing classes: Evidence from event-related brain potentials. Journal of cognitive Neuroscience, 3(2), 151-165.
[134] Nguyen, D. T., Luong, C. M., Vu, B. K., Mixdorff, H., & Ngo, H. H. (2004, October). Fujisaki model based F0 contours in Vietnamese TTS. In INTERSPEECH (pp. 1429-1432).
[135] Nickels, S., & Steinhauer, K. (2018). Prosody–syntax integration in a second language: Contrasting event-related potentials from German and Chinese learners of English using linear mixed effect models. Second Language Research, 34(1), 9-37.
[136] Nooteboom, S. (1997). The prosody of speech: melody and rhythm. The handbook of phonetic sciences, 5, 640-673.
[137] Obleser, J., Lahiri, A., & Eulitz, C. (2003). Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds post syllable onset. Neuroimage, 20(3), 1839-1847.
[138] Obleser, J., Scott, S. K., & Eulitz, C. (2006). Now you hear it, now you don’t: transient traces of consonants and their nonspeech analogues in the human brain. Cerebral Cortex, 16(8), 1069-1076.
[139] Osterhout, L., Holcomb, P. J., & Swinney, D. A. (1994). Brain potentials elicited by garden-path sentences: evidence of the application of verb information during parsing. Journal of experimental psychology: Learning, memory, and cognition, 20(4), 786.
[140] Owens, R. E. (2019). Language development: An Introduction (9th ed.). Pearson Education.
[141] Pam, K. J. (2013). English, a Tonal Language? AFRREV IJAH: An International Journal of Arts and Humanities, 2(1), 273-280.
[142] Parrish, A., & Pylkkanen, L. (2022). Conceptual combination in the LATL with and without syntactic composition. Neurobiology of Language, 3(1), 46-66.
[143] Paul, R. & Norbury, C. F. (2012). Language disorders from infancy through adolescence (4th ed.). Elsevier Health Sciences.
[144] Paul, R., Norbury, C. F. & Gosse, C. (2024). Language disorders from infancy through adolescence (6th ed.). Elsevier Health Sciences.
[145] Payne, T. E. (2007). Summary of Semantic Roles and Grammatical Relations. Eng 595G. press.
[146] Phillips, C., Pellathy, T., Marantz, A., Yellin, E., Wexler, K., Poeppel, D., ... & Roberts, T. (2000). Auditory cortex accesses phonological categories: an MEG mismatch study. Journal of Cognitive Neuroscience, 12(6), 1038-1055.
[147] Plank, F. (2017). Split morphology: How agglutination and flexion mix. Linguistic Typology, 21.
[148] Poeppel, D., Phillips, C., Yellin, E., Rowley, H. A., Roberts, T. P., & Marantz, A. (1997). Processing of vowels in supratemporal auditory cortex. Neuroscience letters, 221(2-3), 145-148.
[149] Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148.
[150] Puga, K., Fuchs, R., Setter, J., & Mok, P. (2017). The perception of English intonation patterns by German L2 speakers of English. Proceedings of the Interspeech 2017, 3241-3245.
[151] Pylkkanen, L. (2019). The neural basis of combinatory syntax and semantics. Science, 366(6461), 62-66.
[152] Raymond D. Kent, & Charles Read. (2002). The Acoustic Analysis of Speech (2nd ed.). Singular/Thomson Learning.
[153] Regel, S., Meyer, L., & Gunter, T. C. (2014). Distinguishing neurocognitive processes reflected by P600 effects: Evidence from ERPs and neural oscillations. PloS one, 9(5), e96840.
[154] Rijkhoff, J. (2015). Word order. In International Encyclopedia of the Social and Behavioral Sciences (pp. 644-656). Elsevier.
[155] Roll, M., Horne, M., & Lindgren, M. (2009). Left-edge boundary tone and main clause verb effects on syntactic processing in embedded clauses–An ERP study. Journal of neurolinguistics, 22(1), 55-73.
[156] Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive psychology, 7(4), 573-605.
[157] Rosen, S. T. (2007). Structured Events, Structured Discourse. In Ramchand & Reiss (ed.), The Oxford Handbook of Linguistic Interfaces. Oxford University Press.
[158] Roth, F. P., & Spekman, N. J. (1984). Assessing the pragmatic abilities of children: Part 1. Organizational framework and assessment parameters. Journal of speech and Hearing Disorders, 49(1), 2-11.
[159] Sapungan, R. M., Aceron, R. M., Castillo, R. C., Katigbak, X. N. V., & Villanueva, D. M. (2018). Sociolinguistic Competence of Filipino Hotelier and Restaurateur Interns. International Linguistics Research, 1(2).
[160] Schack, K. (2000). Comparison of intonation patterns in Mandarin and English for a particular speaker. University of Rochester Working Papers in the Language Sciences, 1(1), 24-54.
[161] Schirmer, A., Tang, S. L., Penney, T. B., Gunter, T. C., & Chen, H. C. (2005). Brain responses to segmentally and tonally induced semantic violations in Cantonese. Journal of cognitive neuroscience, 17(1), 1-12.
[162] Shakkour, W. (2014). Cognitive skill transfer in English reading acquisition: Alphabetic and logographic languages compared. Open Journal of Modern Linguistics, 4(04), 544.
[163] Sheehan, E. A., Namy, L. L., & Mills, D. L. (2007). Developmental changes in neural activity to familiar words and gestures. Brain and language, 101(3), 246-259.
[164] Shen, W., Fiori-Duharcourt, N., & Isel, F. (2016). Functional significance of the semantic P600: evidence from the event-related brain potential source localization. NeuroReport, 27(7), 548-558.
[165] Shestakova, A., Brattico, E., Soloviev, A., Klucharev, V., & Huotilainen, M. (2004). Orderly cortical representation of vowel categories presented by multiple exemplars. Cognitive Brain Research, 21(3), 342-350.
[166] Shtyrov, Y., Pulvermuller, F., Naatanen, R., & Ilmoniemi, R. J. (2003). Grammar processing outside the focus of attention: an MEG study. Journal of cognitive neuroscience, 15(8), 1195-1206.
[167] Slavova, V., & Soschen, A. (2015). On mental representations: Language structure and meaning revised. International Journal Information theories & applications, 2(4), 316-325.
[168] Song, J. J. (2012). Word Order: Research Surveys in Linguistics. Cambridge University Press.
[169] Steinhauer, K., & Drury, J. E. (2012). On the early left-anterior negativity (ELAN) in syntax studies. Brain and language, 120(2), 135-162.
[170] Stuckenschneider, T., Askew, C. D., Weber, J., Abeln, V., Rudiger, S., Summers, M. J., ... & NeuroExercise Study Group. (2020). Auditory event-related potentials in individuals with subjective and mild cognitive impairment. Behavioural brain research, 391, 112700.
[171] Trask, R. L. (1995). A Dictionary of Phonetics and Phonology (1st ed.). Routledge.
[172] Tse, K. P. (2022). Yuyanxue gailun [An Introduction to Linguistics] (4th ed.). San-Min Book Co., Ltd.
[173] Tseng, C. Y. & Su, Z. Y. (2008, September). Mandarin Discourse Prosody Other than Tones and Intonation–Decomposing the F0 Constitution by Prosodic Hierarchy with the Fujisaki Model [In Chinese]. In Proceedings of the 20th Conference on Computational Linguistics and Speech Processing (pp. 53-65).
[174] Tye Murray, N. (2014). Foundations of aural rehabilitation: Children, adults, and their family members (4th ed.). Cengage.
[175] Ueno, M., & Garnsey, S. M. (2008). An ERP study of the processing of subject and object relative clauses in Japanese. Language and Cognitive Processes, 23(5), 646-688.
[176] University of Minnesota (Ed.). (2016). Communication in the Real World: An Introduction to Communication Studies. University of Minnesota Libraries Publishing.
[177] Van Dinteren, R., Arns, M., Jongsma, M. L., & Kessels, R. P. (2014). P300 development across the lifespan: a systematic review and meta-analysis. PloS one, 9(2), e87347.
[178] Van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension:
Benefits, costs, and ERP components. International journal of psychophysiology, 83(2), 176-190.
[179] Van Trijp, R. (2011). A design pattern for argument structure constructions. Design patterns in Fluid Construction Grammar, 115-145.
[180] Verleger, R. (2008). P3b: towards some decision about memory. Clinical Neurophysiology, 119(4), 968-970.
[181] Wambacq, I. J., & Jerger, J. F. (2004). Processing of affective prosody and lexicalsemantics in spoken utterances as differentiated by event-related potentials. Cognitive Brain Research, 20(3), 427-437.
[182] Wang, Y., Takahiro, H., Jeong, D. Y. (2016). Jiaodian he jumoyingao de hengding bianyi ji qixiangguan wenti [Stability and Variation of Sentence Focus and Ending Pitches and Relevant Issues]. Essays on Linguistics, 54(2), 66-99.
[183] Whaley, L. J. (1996). Introduction to typology: The unity and diversity of language. SAGE publications.
[184] Wu, J. (2007) Jiaose zhicheng yufa jianjie [An Introduction to Role and Reference Grammar]. Language and Linguistics, 8(1), 5-70.
[185] Yan, Y. (2023). Grammaticalization of Coverbs in Modern Mandarin Chinese. Lecture Notes on Language and Literature, 6(15).
[186] Yang, H. K., Kim, R., & Sung, M. C. (2014). Basic communicative competence and sentential utterance production. The SNU Journal of Education Research, 23,
98-117.
[187] Yang, S., Cai, Y., Xie, W., & Jiang, M. (2021). Semantic and syntactic processing during comprehension: ERP evidence from Chinese QING structure. Frontiers in Human Neuroscience, 15, 701923.
[188] Yang, Y. C. H., & Kuo, J. J. (1998, February). The Chinese temporal coverbs, postpositions, coverb-postposition pairs, and their temporal logic. In Proceedings of the 12th Pacific Asia Conference on Language, Information and Computation (pp.20-32).
[189] Yang, Y. F., Huang, X. J., Gao, L. (2006). Studies on Speech Prosody [In Chinese]. Advances in Psychological Science, 14(4), 546-550.
[190] Ye, Z., Luo, Y. J., Friederici, A. D., & Zhou, X. (2006). Semantic and syntactic processing in Chinese sentence comprehension: Evidence from event-related potentials. Brain research, 1071(1), 186-196.
[191] Ye, Z., & Zhou, X. (2009). Conflict control during sentence comprehension: fMRI evidence. Neuroimage, 48(1), 280-290.
[192] Yin, H. (2003). A cognitive account of Mandarin coverbs. Working Papers of the Linguistics Circle, 17, 201-208.
[193] You, J. M., & Chen, K. J. (2004, July). Automatic semantic role assignment for a tree structure. In Proceedings of the third SIGHAN workshop on Chinese language processing (pp. 109-115).
[194] Yuan, Y. L. (2002). Lunyuan jiaose de cengji guanxi han yuyi tezheng [On the hierarchical relation and semantic features of the thematic roles in Chinese]. Chinese Teaching in the World, 2(3), 11-22.
[195] Zhang, J. (2023). Chinese syllable structure. In Oxford Research Encyclopedia of Linguistics.
[196] Zora, H., Wester, J., & Csepe, V. (2023). Predictions about prosody facilitate lexical
access: Evidence from P50/N100 and MMN components. International Journal of Psychophysiology, 194, 112262.
指導教授 徐峻賢(Chun-Hsien Hsu) 審核日期 2025-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明