博碩士論文 110826009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.139.98.10
姓名 葉子維(Tzu-Wei Yeh)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 包覆性腹膜硬化症相關miRNAs透過間質幹細胞衍生外泌體對腹膜纖維化過程的影響之研究
(The study of effects of WJMSC-derived exosomes with encapsulated peritoneal sclerosis related miRNAs on peritoneal fibrosis process)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-12以後開放)
摘要(中) 腹膜透析 (Peritoneal dialysis, PD) 是一種廣為人知的末期腎病的腎臟替代療法 (Renal replacement therapy)。長期使用高濃度葡萄糖透析液的洗腎病患有較高機率會誘發間皮到間質 (MMT) 的轉換,進而引發腹膜纖維化 (Peritoneal fibrosis)。包覆性腹膜硬化症(Encapsulating peritoneal sclerosis, EPS) 是長期使用腹膜透析而產生的致死併發症,造成腹膜增厚且纖維化並產生纖維繭將直腸包覆,最後造成腸道的阻塞。至今皮質類固醇 (Corticosteroid)、泰莫西芬 (Tamoxifen)、抗免疫藥物已被證實能夠有效的改善包覆性腹膜硬化症的情況,但是此疾病的致死率仍然居高不下。相對於不同器官所分離出來的間質幹細胞,華通氏膠質 (Wharton′s jelly, 一種臍帶內的膠狀組織) 的間質幹細胞分泌出來的外泌體的產量較高,因此利用WJMSC (華通氏膠質膠質幹細胞) 作為外泌體的來源。外泌體內含小分子核糖核酸、訊號核糖核酸及蛋白質…等訊號傳遞分子,進入目標細胞並調控功能。在先前實驗室研究結果顯示,在包覆性腹膜硬化症患者的透析液中,miR-17-5p、miR-155-5p、miR-202-3p、miR-422a和miR-483-5p的表現量皆有顯著下調的情況,經過後分析後五個miRNAs具備作為生物標記及調控腹膜硬化症的潛力miRNAs。在本實驗中,首先用WJMSC的條件培養基加入RNase A 以及RNase A/Triton X-100,以初步挑選5個候選miRNAs何者包裹在外泌體裡而不是存在於外泌體膜狀結構之外。證明完miRNA存在於外泌體與否,下一步利用生物支架 (3D-Scaffold) 培養WJMSC並萃取外泌體,並發現相較於培養盤,生物支架能夠提供更好的外泌體產率。接著了解五個候選miRNAs 在WJMSC衍生外泌體的表現量,從結果上發現miR-17-5p表現量相對於其他四個候選miRNA高出許多,使我們開始探討WJMSC衍生外泌體所富含的miR-17-5p是否能夠影響由TGF-β1所誘導MMT。首先將WJMSC所分泌外泌體加入由TGF-β1所誘導人類肋膜間皮細胞 (MeT-5A),觀察到20 µg/ml的外泌體可以透過降低間質性蛋白表現 (MMP-2和Vimentin),能夠減少由TGF-β1所誘導MMT而產生的細胞形變。下一步,為了能夠證實外泌體中的miR-17-5p是調控MMT的媒介之一,將miR-17-5p過表現在外泌體中並加入由TGF-β1所誘導的MeT-5A,研究結果顯示,間質性蛋白表現 (MMP-2和Vimentin) 及細胞形變會有下降的趨勢。綜合上述結論,外泌體內的miR-17-5p可以在TGF-β1所誘導MeT-5A所產生的MMT扮演著抑制調控的角色。接著在先前研究中,miR-17-5p 和miR-483-5p皆是作為減緩MMT進程的潛力miRNAs且能夠調控不同的MMT相關蛋白。因此我們想了解過表現miR-17-5p外泌體、過表現miR-483-5p外泌體以及結合miR-17-5p和miR-483-5p過表現外泌體的組別 (Combination) 是能夠有效的抑制由TGF-β1所誘導的MMT。在研究中發現,miR-17-5p過表現外泌體、miR-483-5p過表現外泌體及結合miR-17-5p和miR-483-5p過表現外泌體的組別都能有效得降低由TGF-β1所誘導的細胞形變。MMT相關的蛋白調控方面,miR-17-5p過表現外泌體能夠調控間質性蛋白 (MMP-2),miR-483-5p過表現外泌體在間質性蛋白 (TypeΙcollagen、MMP-2和α-SMA) 都有調控其表現量的效果,而且相較於單一miRNA 過表現外泌體,結合miR-17-5p和miR-483-5p過表現外泌體的組別在TypeΙcollagen以及MMP-2的抑制能力有增強的趨勢,間接證明在這兩種miRNAs過表現外泌體共同作用下,其效力對於上述TypeΙcollagen和MMP-2蛋白具有加乘的效果。在細胞收縮能力方面,miR-17-5p 過表現外泌體能減弱TGF-β1所誘導的間皮細胞凝膠收縮的能力,而miR-483-5p過表現外泌體及結合miR-17-5p和miR-483-5p過表現外泌體的組別則否。綜合上述結果,對於MMT的調控,結合miR-17-5p 和miR-483-5p過表現外泌體也是具有潛力的方式。未來對於miR-17-5p 和miR-483-5p過表現外體調控MMT的機制也能更深入研究及探討。
摘要(英) Peritoneal dialysis (PD) was a renal replacement therapy against end-stage renal diseases. Long-term use of high-glucose dialysate could induce mesothelial-to-mesenchymal transition (MMT) in peritoneal mesothelial cells, resulting in peritoneal fibrosis (PF). Encapsulating peritoneal sclerosis (EPS) is a rare complication of end-stage renal disease for long-term of PD treatment. EPS formation has been confirmed to make peritoneum thicker and fibrotic, which causes the formation of fibrous cocoon wrapping bowel leading intestinal obstruction. EPS have been reported to be improved with corticosteroids, tamoxifen, or immunosuppressive agents, but the mortality rate for EPS was still high (25%–55%). Compare with other types of mesenchymal stem cells, WJMSCs (Wharton’s jelly mesenchymal stem cells) had the high yield of exosomes in previous report. Exosomes have been reported to deliver important information such as miRNAs, mRNAs, and proteins into the target cells and to mediate the biological behaviors. Our previous study showed that the expressions of miR-17-5p, miR-155-5p, miR-202-3p, miR-422a, and miR-483-5p could identify EPS in peritoneal effluent. In our study, the conditioned medium of WJMSC cells was treated with Triton X-100, RNase A alone or combination in order to test these miRNAs are released as the free form or encapsulated into exosomes. The results showed that miR-17-5p was wrapped with membrane such as exosomes instead of being released directly and miR-17-5p expression was abundant in WJMSC-derived exosome. Next, WJMSC-derived exosomes was isolated with 3D-scaffolds, and we found that the yield of exosomes with a 3D-scaffold was larger than 2D-culture. In our result, Mesothelial-to-mesenchymal transition (MMT) induced by TGF-β1 in human mesothelial cells (MeT-5A) could be inhibited after 20 µg/ml WJMSC-derived exosome treatment, which was investigated by down-regulation of mesenchymal marker (MMP-2 and Vimentin) and inhibition of cellular morphological changes by measurement of five cellular metrics (Size, Area, Length, Perimeter, Circularity). MMP-2, Vimentin expressions and cellular morphological changes were decreased after treatment of miR-17-5p-overexpressed exosomes. As stated above, exosomal miR-17-5p from WJMSC was a one of mediators to decrease MMT induced by TGF-β1 in MeT-5A. In our previous study, we found that miR-17-5p and miR-483-5p were potential miRNA candidates for EPS. Therefore, we investigated that whether miR-17-5p-overexpressed exosomes and miR-483-5p-overexpressed exosomes and combination of miR-483-5p-overexpressed exosomes and miR-17-5p-overexpressed exosomes could reduce the MMT progression induced by TGF-β1 in MeT-5A. In our result, miR-17-5p-overexpressed exosomes and miR-483-5p-overexpressed exosomes and combination of two different overexpressed exosomes could reduce cellular morphological changes induced by TGF-β1. Additionally, miR-17-5p-overexpressed exosomes could down-regulate the mesenchymal marker (MMP-2) and miR-483-5p- overexpressed exosomes could down-regulate the mesenchymal marker (TypeΙcollagen, MMP-2 and α-SMA). Most importantly, compare with single miRNA-overexpressed exosomes, combination of two different overexpressed exosomes could inhibit the expressions of mesenchymal marker (TypeΙcollagen, MMP-2) more effectively. In regard to contractile activity of collagen gel in human mesothelial cell (MeT-5A), miR-17-5p-overexpressed exosomes could attenuate the TGF-β1 induced contractile activity by measurement of collagen gel contraction assay, but miR-483-5p-overexpressed exosomes and combination did not. As stated above, the combination of miR-483-5p-overexpressed exosomes and miR-17-5p-overexpressed exosomes also could be a potential role for reducing MMT progression. In the future, we will continue to explore the mechanism of miR-17-5p and miR-483-5p-overexpressed exosomes in MMT induced by TGF-β1.
關鍵字(中) ★ 外泌體 關鍵字(英) ★ Exosome
論文目次 目錄
中文摘要 i
Abstract iii
致謝 vii
圖目錄 xi
表目錄 xii
Abbreviation list xiii
一、介紹 (Introduction) 1
1. 外泌體 (Exosome) 1
1-1 間質幹細胞衍生外泌體 (MSC-derived exosome) 1
1-2 間質幹細胞衍生外泌體的治療應用 (Therapeutic application of MSC-derived 3
exosome) 3
2. 包覆性腹膜硬化症 ( Encapsulated peritoneal sclerosis) 5
2-1 腹膜纖維化的形成 (Formation of peritoneal fibrosis) 5
2-2 包覆性腹膜硬化症的發生 (Development of encapsulated peritoneal sclerosis) 7
2-3 包覆性腹膜硬化症的診斷與治療 (Therapy of encapsulated peritoneal sclerosis) 7
3. 由轉化生長因子誘導的間質變間皮轉換 (MMT induced by TGF-β1) 8
4. 小分子核醣核酸 (MicroRNA) 10
4-1 小分子核醣核酸的生成 (Genesis of microRNA) 10
4-2 小分子核醣核酸的調控及應用 (Application and regulation of microRNA) 10
5. 研究目的 (Purpose of the study) 12
二、實驗材料及方法 (Materials and methods) 13
1. 實驗材料 (Materials) 13
1-1 細胞株 (Cell lines) 13
1-2 小分子核糖核酸模擬物 (MiRNA mimics) 13
1-3 抗體 (Antibodies) 13
1-4 螢光染劑 (Fluorescent reagent) 13
1-5 外泌體轉染套組 (Exosome transfection kit) 14
2. 實驗方法 (Methods) 14
2-1 藉由Triton X-100和RNase A預測外泌體內EPS相關miRNA的包覆情形 (The prediction of EPS-related miRNAs in exosomes with Triton X-100 & RNase A) 14
2-2細胞及外泌體蛋白質樣本製備 (Preparation of cell and exosome protein sample) 14
2-3 西方墨點法 (Western Blot) 15
2-4 螢光染色 (Fluorescent staining) 15
2-5 外泌體純化 (Exosome isolation) 16
2-6 轉染外泌體 (Exosome transfection) 16
2-7 收集生物支架所培養的外泌體 (Collect exosomes attached in a 3D-scaffold) 16
2-8 即時定量聚合酶連鎖反應 (RT-qPCR) 17
2-9 膠原凝膠收縮測定 (Collagen gel contraction assay) 17
2-10 統計 (Statistics) 17
三、實驗結果 (Results) 18
1. 利用Triton X-100和RNase A 預測EPS相關miRNAs在外泌體的包覆情形 18
2. 利用生物支架 (3D-scaffold) 培養WJMSC並增加外泌體產率 19
3. EPS相關miRNAs在WJMSC衍生外泌體的表現量 19
4. WJMSC衍生外泌體內的miR-17-5p調控TGF-β1誘導的細胞形變 20
5. WJMSC衍生外泌體內的miR-17-5p調控MMT相關蛋白 21
6. MiR-17-5p和miR-483-5p透過外泌體調控細胞形變及MMT相關蛋白 22
7. MiR-17-5p和miR-483-5p透過外泌體調控細胞凝膠收縮能力 23
四、結論與討論 (Conclusions and discussions) 25
1. 探討利用Triton X-100和RNase A預測EPS相關miRNAs在外泌體的包覆情形 25
2. 探討WJMSC衍生外泌體中的miR-17-5p對細胞形變的影響 25
3. 探討WJMSC衍生外泌體中的miR-17-5p對MMT相關蛋白的影響 25
4. 探討利用EPS相關miRNAs透過WJMSC衍生外泌體對大鼠中腹膜纖維化的影響 26
5. 探討MiR-17-5p和miR-483-5p透過外泌體調控MMT相關蛋白及凝膠收縮能力 26
6. 探討其他EPS相關miRNAs透過外泌體對於MMT的影響 27
7. 探討EPS相關miRNAs透過外泌體進入目標細胞的情形 27
8. 探討利用生物反應器 (Bioreactor system) 大量收集WJMSC衍生出的外泌體 28
9. 未來展望 28
五、參考資料及文獻 (Reference) 30
參考文獻 五、參考資料及文獻 (Reference)
1. Feng ZY, Zhang QY, Tan J, Xie HQ: Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved? Sci China Life Sci 2022, 65(7):1325-1341.
2. Deng F, Miller J: A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019, 42(4):226-239.
3. Rezaie J, Ajezi S, Avci CB, Karimipour M, Geranmayeh MH, Nourazarian A, Sokullu E, Rezabakhsh A, Rahbarghazi R: Exosomes and their Application in Biomedical Field: Difficulties and Advantages. Mol Neurobiol 2018, 55(4):3372-3393.
4. Liang Y, Duan L, Lu J, Xia J: Engineering exosomes for targeted drug delivery. Theranostics 2021, 11(7):3183-3195.
5. Kalluri R, LeBleu VS: The biology, function, and biomedical applications of exosomes. Science 2020, 367(6478).
6. Gonzalez-King H, Garcia NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepulveda P: Hypoxia Inducible Factor-1alpha Potentiates Jagged 1-Mediated Angiogenesis by Mesenchymal Stem Cell-Derived Exosomes. Stem Cells 2017, 35(7):1747-1759.
7. da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006, 119(Pt 11):2204-2213.
8. Troyer DL, Weiss ML: Wharton′s jelly-derived cells are a primitive stromal cell population. Stem Cells 2008, 26(3):591-599.
9. Liu WZ, Ma ZJ, Li JR, Kang XW: Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther 2021, 12(1):102.
10. Farley AR, Link AJ: Identification and quantification of protein posttranslational modifications. Methods Enzymol 2009, 463:725-763.
11. Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X: Mesenchymal Stem Cell-Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front Pharmacol 2020, 11:590470.
12. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, Qian H, Xu W, Zhu W: Exosomes Derived from Akt-Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth Factor D. Stem Cells Transl Med 2017, 6(1):51-59.
13. Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, Keller M, Ludwig AK, Duhan V, Radtke S et al: Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 2017, 60:220-232.
14. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S: Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 2012, 126(22):2601-2611.
15. O′Brien KP, Khan S, Gilligan KE, Zafar H, Lalor P, Glynn C, O′Flatharta C, Ingoldsby H, Dockery P, De Bhulbh A et al: Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 2018, 37(16):2137-2149.
16. Xie L, Zeng Y: Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020, 11:590972.
17. Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, He T, Shen K, Wang Y, Liu J et al: Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther 2021, 12(1):221.
18. Lee BC, Kang I, Yu KR: Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. J Clin Med 2021, 10(4).
19. Jagirdar RM, Bozikas A, Zarogiannis SG, Bartosova M, Schmitt CP, Liakopoulos V: Encapsulating Peritoneal Sclerosis: Pathophysiology and Current Treatment Options. Int J Mol Sci 2019, 20(22).
20. Li PK, Chow KM, Van de Luijtgaarden MW, Johnson DW, Jager KJ, Mehrotra R, Naicker S, Pecoits-Filho R, Yu XQ, Lameire N: Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017, 13(2):90-103.
21. Morelle J, Sow A, Fustin CA, Fillee C, Garcia-Lopez E, Lindholm B, Goffin E, Vandemaele F, Rippe B, Oberg CM et al: Mechanisms of Crystalloid versus Colloid Osmosis across the Peritoneal Membrane. J Am Soc Nephrol 2018, 29(7):1875-1886.
22. Garosi G, Di Paolo N: Morphological aspects of peritoneal sclerosis. J Nephrol 2001, 14 Suppl 4:S30-38.
23. Davies SJ: Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 2004, 66(6):2437-2445.
24. Schaefer B, Bartosova M, Macher-Goeppinger S, Sallay P, Voros P, Ranchin B, Vondrak K, Ariceta G, Zaloszyc A, Bayazit AK et al: Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int 2018, 94(2):419-429.
25. Lopez-Cabrera M: Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv Med 2014, 2014:473134.
26. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, Kelly MM: Transient overexpression of TGF-beta1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol 2005, 16(2):425-436.
27. Strippoli R, Loureiro J, Moreno V, Benedicto I, Perez Lozano ML, Barreiro O, Pellinen T, Minguet S, Foronda M, Osteso MT et al: Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med 2015, 7(1):102-123.
28. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V et al: Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003, 348(5):403-413.
29. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA: Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009, 119(6):1438-1449.
30. Moinuddin Z, Summers A, Van Dellen D, Augustine T, Herrick SE: Encapsulating peritoneal sclerosis-a rare but devastating peritoneal disease. Front Physiol 2014, 5:470.
31. Latus J, Habib SM, Kitterer D, Korte MR, Ulmer C, Fritz P, Davies S, Lambie M, Alscher MD, Betjes MG et al: Histological and clinical findings in patients with post-transplantation and classical encapsulating peritoneal sclerosis: a European multicenter study. PLoS One 2014, 9(8):e106511.
32. Pollock CA: Diagnosis and management of encapsulating peritoneal sclerosis. Perit Dial Int 2001, 21 Suppl 3:S61-66.
33. Augustine T, Brown PW, Davies SD, Summers AM, Wilkie ME: Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clin Pract 2009, 111(2):c149-154; discussion c154.
34. Nakamoto H: Encapsulating peritoneal sclerosis--a clinician′s approach to diagnosis and medical treatment. Perit Dial Int 2005, 25 Suppl 4:S30-38.
35. Kawaguchi Y, Kawanishi H, Mujais S, Topley N, Oreopoulos DG: Encapsulating peritoneal sclerosis: definition, etiology, diagnosis, and treatment. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int 2000, 20 Suppl 4:S43-55.
36. Brown MC, Simpson K, Kerssens JJ, Mactier RA, Scottish Renal R: Encapsulating peritoneal sclerosis in the new millennium: a national cohort study. Clin J Am Soc Nephrol 2009, 4(7):1222-1229.
37. Rigby RJ, Hawley CM: Sclerosing peritonitis: the experience in Australia. Nephrol Dial Transplant 1998, 13(1):154-159.
38. Nomoto Y, Kawaguchi Y, Kubo H, Hirano H, Sakai S, Kurokawa K: Sclerosing encapsulating peritonitis in patients undergoing continuous ambulatory peritoneal dialysis: a report of the Japanese Sclerosing Encapsulating Peritonitis Study Group. Am J Kidney Dis 1996, 28(3):420-427.
39. Summers AM, Abrahams AC, Alscher MD, Betjes M, Boeschoten EW, Braun N, Brenchley PE, Davies S, Dunn L, Engelsman L et al: A collaborative approach to understanding EPS: the European perspective. Perit Dial Int 2011, 31(3):245-248.
40. Kawanishi H, Moriishi M, Ide K, Dohi K: Recommendation of the surgical option for treatment of encapsulating peritoneal sclerosis. Perit Dial Int 2008, 28 Suppl 3:S205-210.
41. Kawanishi H, Moriishi M, Tsuchiya S: Experience of 100 surgical cases of encapsulating peritoneal sclerosis: investigation of recurrent cases after surgery. Adv Perit Dial 2006, 22:60-64.
42. Sporn MB: TGF-beta: 20 years and counting. Microbes Infect 1999, 1(15):1251-1253.
43. Massague J: TGF-beta signal transduction. Annu Rev Biochem 1998, 67:753-791.
44. Pepper MS: Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 1997, 8(1):21-43.
45. Wilson RB, Archid R, Reymond MA: Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-beta1 Inhibition. Int J Mol Sci 2020, 21(11).
46. Rynne-Vidal A, Au-Yeung CL, Jimenez-Heffernan JA, Perez-Lozano ML, Cremades-Jimeno L, Barcena C, Cristobal-Garcia I, Fernandez-Chacon C, Yeung TL, Mok SC et al: Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J Pathol 2017, 242(2):140-151.
47. Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425(6958):577-584.
48. Hua W, Ten Dijke P, Kostidis S, Giera M, Hornsveld M: TGFbeta-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci 2020, 77(11):2103-2123.
49. Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J: Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020, 8:e10136.
50. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
51. Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5):855-862.
52. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432(7014):231-235.
53. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W: Single processing center models for human Dicer and bacterial RNase III. Cell 2004, 118(1):57-68.
54. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, Hart M, Abu-Halima M, Grasser FA, Lenhof HP et al: An estimate of the total number of true human miRNAs. Nucleic Acids Res 2019, 47(7):3353-3364.
55. Liu B, Li J, Cairns MJ: Identifying miRNAs, targets and functions. Brief Bioinform 2014, 15(1):1-19.
56. Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011, 12(2):99-110.
57. Ipsaro JJ, Joshua-Tor L: From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 2015, 22(1):20-28.
58. Zhang H, Wen H, Huang Y: MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2. Exp Ther Med 2022, 24(2):506.
59. Li H, Zhang L, Cai N, Zhang B, Sun S: MicroRNA-494-3p prevents liver fibrosis and attenuates hepatic stellate cell activation by inhibiting proliferation and inducing apoptosis through targeting TRAF3. Ann Hepatol 2021, 23:100305.
60. Zhang Y, Gu T, Xu S, Wang J, Zhu X: Anti-Liver Fibrosis Role of miRNA-96-5p via Targeting FN1 and Inhibiting ECM-Receptor Interaction Pathway. Appl Biochem Biotechnol 2023.
61. Wang J, Chu ES, Chen HY, Man K, Go MY, Huang XR, Lan HY, Sung JJ, Yu J: microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget 2015, 6(9):7325-7338.
62. Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H: MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022, 13:895242.
63. Magri F, Vanoli F, Corti S: miRNA in spinal muscular atrophy pathogenesis and therapy. J Cell Mol Med 2018, 22(2):755-767.
64. Xun J, Du L, Gao R, Shen L, Wang D, Kang L, Chen C, Zhang Z, Zhang Y, Yue S et al: Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B. Theranostics 2021, 11(14):6847-6859.
65. Wu KL, Chou CY, Chang HY, Wu CH, Li AL, Chen CL, Tsai JC, Chen YF, Chen CT, Tseng CC et al: Peritoneal effluent MicroRNA profile for detection of encapsulating peritoneal sclerosis. Clin Chim Acta 2022, 536:45-55.
66. Gonzalez DM, Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014, 7(344):re8.
67. Scheau C, Badarau IA, Costache R, Caruntu C, Mihai GL, Didilescu AC, Constantin C, Neagu M: The Role of Matrix Metalloproteinases in the Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2019, 2019:9423907.
68. Zhang T, Day JH, Su X, Guadarrama AG, Sandbo NK, Esnault S, Denlinger LC, Berthier E, Theberge AB: Investigating Fibroblast-Induced Collagen Gel Contraction Using a Dynamic Microscale Platform. Front Bioeng Biotechnol 2019, 7:196.
69. Kumari J, Wagener F, Kouwer PHJ: Novel Synthetic Polymer-Based 3D Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis. ACS Appl Mater Interfaces 2022, 14(17):19212-19225.
70. Zaravinos A: The Regulatory Role of MicroRNAs in EMT and Cancer. J Oncol 2015, 2015:865816.
71. Li F, Ma N, Zhao R, Wu G, Zhang Y, Qiao Y, Han D, Xu Y, Xiang Y, Yan B et al: Overexpression of miR-483-5p/3p cooperate to inhibit mouse liver fibrosis by suppressing the TGF-beta stimulated HSCs in transgenic mice. J Cell Mol Med 2014, 18(6):966-974.
72. Wang D, Liu Z, Yan Z, Liang X, Liu X, Liu Y, Wang P, Bai C, Gu Y, Zhou PK: MiRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3beta during radiation-induced pulmonary fibrosis. Arch Biochem Biophys 2021, 697:108699.
73. Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y, Zuo X: MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother 2017, 87:412-418.
指導教授 馬念涵(Nianhan Ma) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明