博碩士論文 111221010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.135.200.121
姓名 許哲睿(Che-Jui Hsu)  查詢紙本館藏   畢業系所 數學系
論文名稱 基於腦室體積與認知評估量表的阿茲海默症診斷研究
(Research on Alzheimer’s Disease Diagnosis Based on Ventricular Volume and Cognitive Assessment Scales)
相關論文
★ 氣流的非黏性駐波通過不連續管子之探究★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
★ 影像模糊方法在蝴蝶辨識神經網路中之應用★ 單一非線性平衡律黎曼問題廣義解的存在性
★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解
★ 一些退化擬線性波動方程的解的性質.★ 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的
★ 水文地質學的平衡模型之擴散對流反應方程★ 非線性守恆律的擾動Riemann 問題的古典解
★ BBM與KdV方程初始邊界問題解的週期性★ 共振守恆律的擾動黎曼問題的古典解
★ 可壓縮流中微黏性尤拉方程激波解的行為★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性
★ 有關非線性平衡定律之柯西問題的廣域弱解★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著人口老化,阿茲海默症成為最常見的失智症類型,嚴重影響患者生活品質。
本研究旨在探討結合腦室體積與認知評估量表的診斷方法,以期在阿茲海默症的診斷
中取得優異表現。首先對3D磁振造影(MRI)影像進行資料預處理,計算每張切片中
的腦室面積,最終透過切片堆疊的方式加總成腦室體積。接著,將腦室體積及認知評
估量表數據輸入深度學習中的全連接層神經網絡,區分認知正常對照組(CN)、輕度認
知障礙患者(MCI)和阿茲海默症患者(AD)。結果顯示,三元分類準確率為0.87,認
知正常與輕度認知障礙分類準確率為0.95,輕度認知障礙與阿茲海默症分類準確率為
0.84,認知正常與阿茲海默症分類準確率為0.99。研究結果表明,腦室體積擴大與認知
功能下降具有相關性,為阿茲海默症的早期診斷和進展監測提供了新的思路。然而,
本研究在區分輕度認知障礙與阿茲海默症方面仍有進步空間,未來可增加與阿茲海默
症高度相關的特徵,以改進診斷方法的準確性。總結來說,本研究提出的綜合診斷方
法在提高阿茲海默症診斷準確性方面具有潛力,為未來相關研究和臨床應用提供了重
要參考。
摘要(英) With the aging population, Alzheimer’s disease has become the most common type of de
mentia, severely affecting the quality of life of patients. This study aims to explore a diagnostic
method that combines ventricular volume and cognitive assessment scales to achieve superior
performance in diagnosing Alzheimer’s disease. First, we preprocessed the data from 3D mag
netic resonance imaging (MRI) to calculate the ventricular area in each slice, and then summed
these areas through slice stacking to obtain the total ventricular volume. Next, we input the
ventricular volume and cognitive assessment scale data into a fully connected layer neural net
work in deep learning to distinguish between cognitively normal controls (CN), mild cognitive
impairment patients (MCI), and Alzheimer’s disease patients (AD).
The results showed that the accuracy of the ternary classification is 0.87, the accuracy of
distinguishing between cognitively normal and mild cognitive impairment is 0.95, the accu
racy of distinguishing between mild cognitive impairment and Alzheimer’s disease is 0.84, and
the accuracy of distinguishing between cognitively normal and Alzheimer’s disease is 0.99. The
results indicate that there is a correlation between increased ventricular volume and cognitive de
cline, providing new insights for the early diagnosis and progression monitoring of Alzheimer’s
disease.
However, there is still room for improvement in distinguishing between mild cognitive im
pairment and Alzheimer’s disease. Future work could focus on incorporating features highly
correlated with Alzheimer’s disease to improve the accuracy of the diagnostic method. In con
clusion, the comprehensive diagnostic method proposed in this study has potential in improving
the accuracy of Alzheimer’s disease diagnosis, providing an important reference for future re
search and clinical applications.
關鍵字(中) ★ 阿茲海默症
★ 腦室體積
★ 認知評估量表
★ 深度學習
關鍵字(英) ★ Alzheimer's Disease
★ Ventricular Volume
★ Cognitive Assessment
★ Deep Learning
論文目次 摘要iv
Abstract v
誌謝vi
目錄vii
一、緒論1
二、研究方法4
2.1資料標準化.................................................................... 4
2.2模型結構...................................................................... 5
2.3損失函數...................................................................... 7
2.4優化器......................................................................... 8
2.5評估指標...................................................................... 9
三、資料來源及處理12
3.1資料蒐集...................................................................... 12
3.2資料預處理.................................................................... 13
四、研究結果17
4.1腦室體積對分類結果的影響.................................................. 19
4.2認知正常的對照組與輕度認知障礙患者與阿茲海默症患者.................. 20
4.3認知正常的對照組與輕度認知障礙患者...................................... 21
4.4輕度認知障礙患者與阿茲海默症患者........................................ 22
4.5認知正常的對照組與阿茲海默症患者........................................ 24
4.6認知正常的對照組與認知功能異常患者...................................... 25
五、 總結...................................... 27
參考文獻...................................... 28
參考文獻 [1] J. Gaugler, B. James, T. Johnson, et al., “2022 alzheimer’s disease facts and figures,” Alzheimers
&Dementia, vol. 18, no. 4, pp. 700–789, 2022.
[2] R.C.Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cog
nitive impairment: Clinical characterization and outcome,” Archives of neurology, vol. 56, no. 3,
pp. 303–308, 1999.
[3] D.R. Roalf, P. J. Moberg, S. X. Xie, D. A. Wolk, S. T. Moelter, and S. E. Arnold, “Comparative
accuracies of two common screening instruments for classification of alzheimer’s disease, mild
cognitive impairment, and healthy aging,” Alzheimer’s & dementia, vol. 9, no. 5, pp. 529–537,
2013.
[4] S. L. Warren and A. A. Moustafa, “Functional magnetic resonance imaging, deep learning, and
alzheimer’s disease: A systematic review,” Journal of Neuroimaging, vol. 33, no. 1, pp. 5–18,
2023.
[5] C.Jiang,X.Zhang,W.Huang,andC.Meinel,“Segmentationandquantificationofbraintumor,”in
2004 IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement
Systems, 2004.(VCIMS)., IEEE, 2004, pp. 61–66.
[6] J. Wang, A. Ekin, and G. de Haan, “Shape analysis of brain ventricles for improved classification
of alzheimer'spatients,” in 2008 15th IEEE International Conference on Image Processing, IEEE,
2008, pp. 2252–2255.
[7] S. M. Nestor, R. Rupsingh, M. Borrie, et al., “Ventricular enlargement as a possible measure of
alzheimer’s disease progression validated using the alzheimer’s disease neuroimaging initiative
database,” Brain, vol. 131, no. 9, pp. 2443–2454, 2008.
[8] O. Colliot, G. Chételat, M. Chupin, et al., “Discrimination between alzheimer disease, mild cog
nitive impairment, and normal aging by using automated segmentation of the hippocampus,” Ra
diology, vol. 248, no. 1, pp. 194–201, 2008.
[9] “Linear/fully-connected layers user’s guide.” (), [Online]. Available: https://docs.nvidia.
com/deeplearning/performance/dl-performance-fully-connected/index.html.
[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” in International conference on machine learning, pmlr, 2015, pp. 448
456.
[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A sim
ple way to prevent neural networks from overfitting,” The journal of machine learning research,
vol. 15, no. 1, pp. 1929–1958, 2014.
[12] D.P.KingmaandJ.Ba,“Adam:Amethodforstochasticoptimization,”arXivpreprintarXiv:1412.6980,
2014.
[13] “Confusion matrix.” (), [Online]. Available: https://www.ml-science.com/confusion
matrix.
[14] “Alzheimer's disease neuroimaging initiative.” (), [Online]. Available: https://adni.loni.
usc.edu/.
[15] M.F.Folstein, S. E. Folstein, and P. R. McHugh, ““mini-mental state": A practical method for
grading the cognitive state of patients for the clinician,” Journal of psychiatric research, vol. 12,
no. 3, pp. 189–198, 1975.
[16] J. A. Yesavage, T. L. Brink, T. L. Rose, et al., “Development and validation of a geriatric de
pression screening scale: A preliminary report,” Journal of psychiatric research, vol. 17, no. 1,
pp. 37–49, 1982.
[17] J. C. Morris, “The clinical dementia rating (cdr) current version and scoring rules,” Neurology,
vol. 43, no. 11, pp. 2412–2412, 1993.
[18] R.I.Pfeffer, T. T. Kurosaki, C. Harrah Jr, J. M. Chance, and S. Filos, “Measurement of functional
activities in older adults in the community,” Journal of gerontology, vol. 37, no. 3, pp. 323–329,
1982.
[19] J. L. Cummings, M. Mega, K. Gray, S. Rosenberg-Thompson, D. A. Carusi, and J. Gornbein,
“The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia,”
Neurology, vol. 44, no. 12, pp. 2308–2308, 1994.
[20] “Welcome to antspynet's documentation!” (), [Online]. Available: https://antsx.github.
io/ANTsPyNet/docs/build/html/index.html.
[21] “Advanced normalization tools.” (), [Online]. Available: https://stnava.github.io/ANTs/.
[22] “大津演算法.”(),[Online].Available: https://zh.wikipedia.org/zh-tw/%E5%A4%A7%E6%
B4%A5%E7%AE%97%E6%B3%95.
[23] R.M.Haralick,S.R.Sternberg,andX.Zhuang,“Imageanalysisusingmathematicalmorphology,”
IEEE transactions on pattern analysis and machine intelligence, no. 4, pp. 532–550, 1987.
指導教授 洪盟凱(Meng-Kai Hong) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明