姓名 |
宋狄謙(Di-Chian Sung)
查詢紙本館藏 |
畢業系所 |
數學系 |
論文名稱 |
GLn(C)的不可約表現建構方式之討論 (On Some Constructions of Irreducible Representations of GLn(C))
|
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
|
摘要(中) |
在這篇文章中,我們討論兩種GLn(C)有限維的不可約表現之建構方式: Weyl 模和Highest weight定理。結果我們發現,Weyl模並不涵蓋所有GLn(C)的有限維不可約表現,比如說,對偶表現無法透過Weyl模來建構。因此,我們將透過其他的建構方式,來明確地刻劃出所有GLn(C)的有限維不可約表現。 |
摘要(英) |
There are two constructions of irreducible finite-dimensional representations of GLn(C):
Weyl modules and Highest weight theory. It turns out that Weyl modules don’t give us all irreducible finite-dimensional representations of GLn(C). For example, dual representations are not included in Weyl modules. In this article, we explicitly describe all irreducible finite-dimensional representations of GLn(C) that don’t arise from Weyl modules. |
關鍵字(中) |
★ 不可約表現 ★ Weyl模 ★ 最高權重 |
關鍵字(英) |
★ Irreducible representations ★ Weyl modules ★ Highest weight |
論文目次 |
摘要 i
Abstract ii
Contents iii
1 Introduction 1
2 Preliminaries 3
2.1 Lie Algebras 3
2.2 Representations of Groups And Lie Algebras 6
3 Weyl Modules 11
3.1 Introduction to Weyl modules 11
3.1.1 Representations of Symmetric Group Sd 11
3.2 The Decomposition of V ?d 13
4 Representations of SLn(C) And sln(C) 17
4.1 Highest Weight Theory of sln(C) 17
4.1.1 Representations of sl2(C) 17
4.1.2 Representations of sln(C) 20
4.2 Irreducible Representations of SLn(V) 22
4.2.1 Weyl Module for SLn(V) 22
5 Relation Between Irr(GLn(C)) And Irr(SLn(C)) 32
5.1 Some Constructions of Irr(GLn(C)) 32
5.1.1 First Construction: Φ(a1,a2,...,an) 33
5.1.2 Second Construction: Ψ(λ1,λ2,...,λn) 35
5.2 Characterization of Irreducible Representations of GLn(C) 36
References 42 |
參考文獻 |
[1] I. Schur, Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. 1901.
[2] H. Weyl, The classical groups: their invariants and representations. Princeton university press, 1946.
[3] W. Fulton and J. Harris, Representation theory: a first course. Springer Science & Business Media, 2013, vol. 129.
[4] B. C. Hall and B. C. Hall, Lie groups, Lie algebras, and representations. Springer, 2013.
[5] B. E. Sagan, The symmetric group: representations, combinatorial algorithms, and symmetric functions. Springer Science & Business Media, 2013, vol. 203.
[6] J. E. Humphreys, Introduction to Lie algebras and representation theory. Springer Science & Business Media, 2012, vol. 9.
[7] A. A. Kirillov, An introduction to Lie groups and Lie algebras. Cambridge University Press, 2008, vol. 113. |
指導教授 |
蔡宛育(Wan-Yu Tsai)
|
審核日期 |
2025-1-17 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|