參考文獻 |
1. Chai, Y.-J. Experimental study of statistical properties of passive tracers in swarming bacterial bath (2019).
2. Lin, Z.-T. Dynamics of elliptical particles in swarming bacterial bath (2022).
3. Bacanu, A., Pelletier, J. F., Jung, Y. & Fakhri, N. Inferring scale-dependent non-equilibrium activity using carbon nanotubes. Nature Nanotechnology 18, 905–911 (2023).
4. Gladrow, J., Fakhri, N., MacKintosh, F. C., Schmidt, C. F. & Broedersz, C. P. Broken Detailed Balance of Filament Dynamics in Active Networks. Phys. Rev. Lett. 116, 248301. https://link.aps.org/doi/10.1103/PhysRevLett.116.248301 (24 2016).
5. Ma, S., Zhang, R. & Yuan, J. Observation of broken detailed balance in polymorphic transformation of bacterial flagellar filament. Biophysical Journal 121, 2345–2352. issn: 0006-3495. https://www.sciencedirect.com/science/article/pii/S0006349522004155 (2022).
6. Battle, C. et al. Broken detailed balance at mesoscopic scales in active biological systems. Science 352, 604–607. https://www.science.org/doi/abs/10.1126/science.aac8167 (2016).
7. Lynn, C. W., Cornblath, E. J., Papadopoulos, L., Bertolero, M. A. & Bas-sett, D. S. Broken detailed balance and entropy production in the human brain. Proceedings of the National Academy of Sciences 118, e2109889118.
https://www.pnas.org/doi/abs/10.1073/pnas.2109889118 (2021).
8. Zhang, H. P., Be’er, A., Florin, E.-L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proceedings of the National Academy of Sciences 107, 13626–13630. https://www.pnas.org/doi/abs/10.1073/pnas.1001651107 (2010).
9. Ariel, G. et al. Swarming bacteria migrate by Lévy Walk. Nature communications 6, 8396 (2015).
10. Narayan, V., Ramaswamy, S. & Menon, N. Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic. Science 317, 105–108. https://www.science.org/doi/abs/10.1126/science.1140414 (2007).
11. Deseigne, J., Dauchot, O. & Chaté, H. Collective Motion of Vibrated Polar Disks. Phys. Rev. Lett. 105, 098001. https://link.aps.org/doi/10.1103/PhysRevLett.105.098001 (9 2010).
12. Dey, S., Das, D. & Rajesh, R. Spatial Structures and Giant Number Fluctuations in Models of Active Matter. Phys. Rev. Lett. 108, 238001. https://link.aps.org/doi/10.1103/PhysRevLett.108.238001 (23 2012).
13. Toner, J. Giant number fluctuations in dry active polar fluids: A shocking analogy with lightning rods. The Journal of Chemical Physics 150, 154120. issn: 0021-9606. https://doi.org/10.1063/1.5081742 (2019).
14. Böttcher, T., Elliott, H. L. & Clardy, J. Dynamics of Snake-like Swarming Behavior of Vibrio alginolyticus. Biophysical Journal 110, 981–992. issn:0006-3495. https://www.sciencedirect.com/science/article/pii/
S0006349516000448 (2016).
15. Chiu, Y. Impact of individual variants in cell lengths on the dynamics of bacterial swarming (2024).
16. Kaiser, A. & Löwen, H. Unusual swelling of a polymer in a bacterial bath. The Journal of Chemical Physics 141, 044903. issn: 0021-9606. https://doi.org/10.1063/1.4891095 (2014).
17. Jaeoh Shin Andrey G Cherstvy, W. K. K. & Metzler, R. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles. New Journal of Physics 17 (2015).
18. Nikola, N. et al. Active Particles with Soft and Curved Walls: Equation of State, Ratchets, and Instabilities. Phys. Rev. Lett. 117, 098001. https://link.aps.org/doi/10.1103/PhysRevLett.117.098001 (9 2016).
19. Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation. The Journal of Chemical Physics 92, 5057–5086. issn: 0021-9606 (1990).
20. Aragon, S. R. & Pecora, R. Dynamics of wormlike chains. Macromolecules 18, 1868–1875. https://doi.org/10.1021/ma00152a014 (1985).
21. Hinczewski, M., Schlagberger, X., Rubinstein, M., Krichevsky, O. & Netz, R. R. End-Monomer Dynamics in Semiflexible Polymers. Macromolecules 42, 860–875 (2009).
22. Soda, K. Dynamics of Stiff Chains. I. Equation of Motion. Journal of the Physical Society of Japan 35, 866–870 (1973).
23. López-Blanco, J. R., Miyashita, O., Tama, F. & Chacón, P. in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd, 2014). isbn: 9780470015902. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0020204.pub2.
24. Bauer JA Pavlović J, B.-H. V. Normal Mode Analysis as a Routine Part of a Structural Investigation. Molecules 24 (2019).
25. I, B., TR, L., LW, Y. & E, E. Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39 (2010).
26. Golten, C. & Scheffers, W. Marine vibrios isolated from water along the dutch coast. Netherlands Journal of Sea Research 9, 351–364. issn: 0077-7579. https://www.sciencedirect.com/science/article/pii/0077757975900095 (1975).
27. Atsumi, T et al. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. Journal of Bacteriology 178, 5024–5026.
https://journals.asm.org/doi/abs/10.1128/jb.178.16.5024-5026.1996 (1996).
28. De Boer, W. E., Golten, C. & Scheffers, W. Effects of some physical factors on flagellation and swarming of Vibrio alginolyticus. Netherlands Journal of Sea Research 9, 197–213. issn: 0077-7579. https://www.sciencedirect.com/science/article/pii/0077757975900150 (1975).
29. I, K., Maekawa Y, A. T., M, H. & Y, I. Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol 177, 5158–60 (1995).
30. Hanahan, D. Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166, 557–580. issn: 0022-2836. https://www.sciencedirect.com/science/article/pii/S0022283683802848 (1983).
31. Novick, A. Growth of Bacteria. Annual Review of Microbiology 9, 97–110. https://doi.org/10.1146/annurev.mi.09.100155.000525 (1955).
32. Zernicke, F. Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Zeitschrift für technische Physik 16, 454–457 (1935).
33. Ruhnow, F., Zwicker, D. & Diez, S. Tracking Single Particles and Elongated Filaments with Nanometer Precision. Biophysical Journal 100, 2820-2828. issn: 0006-3495. https://www.sciencedirect.com/science/article/pii/S000634951100467X (2011).
34. Mary, H. & Rueden, C. hadim/FilamentDetector: FilamentDetector-0.4.7 version FilamentDetector-0.4.7. 2019. https://doi.org/10.5281/zenodo.2544848.
35. Eberly, D., Gardner R.and Morse, B., Pizer, S. & Scharlach, C. Ridges for image analysis. J Math Imaging Vis 4, 353–373 (1994). |