博碩士論文 111222602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.149.27.125
姓名 盧比奧(Jerard Vincent Rubio Ang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Development of a Piezoelectric Launcher for Efficient Loading of Nanoparticles into an Optical Trap)
相關論文
★ 等溫過程中平衡捷徑之實驗研究★ 蜂擁菌群中被動粒子統計特性之實驗研究
★ 布朗粒子的自發性熱機★ 研究在擁擠環境中由多個驅動蛋白拖曳的貨物速度
★ Stochastic thermodynamics of colloidal heat engines★ 長鏈被動粒子浸於主動群泳菌落的結構動力學
★ Impact of Individual Variants in Cell Lengths on the Dynamics of Bacterial Swarming
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光鑷懸浮是一種利用光學力將奈米粒子困在真空中的技術。研究人員已將這種方法應用於各個領域,包括光機學和量子力學。具體來說,我們的目標是利用它來研究非平衡現象。然而,建構光鑷懸浮系統存在一些挑戰,其中之一是開發有效的粒子加載系統,將奈米粒子定位在聚焦光的中心。本論文描述了兩種用於加載奈米粒子的客製化發射器的設計和校正。第一種是壓電發射器,它由一個載玻片和放置在壓電材料上的蓋玻片組成。我們通過測量壓電材料產生的加速度來確定最佳驅動頻率和電壓,並且成功地將50奈米聚苯乙烯奈米粒子加載到光阱中。第二種發射器是霧化器,它將含有奈米粒子的液滴霧化到空氣中。這種技術使我們能夠加載小至25奈米的奈米粒子。我們分析測量的粒子軌跡的功率譜證實在大氣壓下,這些粒子的動力學仍然是過阻尼的。接下來,我們會將配備最佳化壓電發射器的光鑷懸浮系統放置在真空腔中。通過在這種環境中捕獲和操縱奈米粒子,我們的目標是研究它們在無阻尼條件下的動力學。
摘要(英) Optical levitation is a technique used to trap a nanoparticle in a vacuum by optical force. This method has been employed across various research fields, including optomechanics and quantum mechanics. In particular, we aim to utilize it to study non-equilibrium phenomena. However, constructing the optical levitation system presents several challenges, one of which is developing an effective particle loading system for launching nanoparticles into the center of focused light. This thesis presents the design and calibration of two types of homemade launchers for loading nanoparticles. The first one is the piezoelectric launcher, which consists of a glass slide with a coverslip placed on the piezoelectric material. We determine the optimal driving frequency and voltage by measuring the accelerations produced by a piezoelectric material and successfully load 50 nm polystyrene nanoparticles into the optical trap. The second launcher is a mesh nebulizer, which aerosolizes liquid droplets with nanoparticles into the air. This technique enables the loading of nanoparticles as small as 25 nm. The power spectrum analysis of the measured trajectories confirms that the dynamics of these particles remain overdamped at atmospheric pressure in the air. The next step is to place the optical levitation system, equipped with the optimized piezoelectric launcher, inside a vacuum chamber. By trapping and manipulating nanoparticles in this environment, we aim to investigate their dynamics under underdamped conditions.
關鍵字(中) ★ 光鑷懸浮
★ 壓電
關鍵字(英) ★ Optical levitation
★ Piezoelectric
★ Optical tweezer
論文目次 Contents
1 Introduction 1
2 Optical tweezer theory and practical considerations 5
2.1 Historical background.........................5
2.2 Optical forces on levitated nanospheres...............5
2.2.1 Ray optics regime........................5
2.2.2 Rayleigh approximation....................6
2.2.3 Practical consideration of single beamtrap.........9
2.2.4 Mie scattering regime.....................13
3 Dynamics of a levitated nanoparticle 15
3.1 A free particle..............................15
3.2 An optically trapped particle.....................16
3.3 Power spectrum analysis........................18
4 Particle loading 23
4.1 Piezoelectric launcher..........................23
4.1.1 Impedance analysis.......................25
4.1.2 Launcher acceleration.....................27
4.1.3 Results..............................31
4.1.4 Launching nanoparticles into an optical trap........34
4.2 Nebulizer.................................38
5 Conclusions and outlook 41
A Optical levitation system 43
A.1 Trapping.................................44
A.2 Detection.................................44
A.3 Data acquisition.............................46
A.4 Vacuum System.............................46
B Opticalalignment 49
Bibliography 51
參考文獻 [1] F. Reif. Fundamentals of Statistical and Thermal Physics. Waveland Press,
2009. ISBN: 9781478610052. URL: https://books.google.com.tw/ books?id=ObsbAAAAQBAJ.
[2] Carlos Bustamante, Jan Liphardt, and Felix Ritort. “The Nonequilibrium Thermodynamics of Small Systems”. In: Physics Today 58.7 (July 2005), pp. 43–48. ISSN: 0031-9228. DOI: 10.1063/1.2012462. eprint: https:
//pubs.aip.org/physicstoday/article-pdf/58/7/43/ 16729192/43\_1\_online.pdf. URL: https://doi.org/10.
1063/1.2012462.
[3] C. Jarzynski. “Nonequilibrium Equality for Free Energy Differences”. In: Phys. Rev. Lett. 78 (14 1997), pp. 2690–2693. DOI: 10 . 1103 /
PhysRevLett.78.2690. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.78.2690.
[4] Gavin E. Crooks. “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences”. In: Phys. Rev. E 60 (3 1999), pp. 2721–2726. DOI: 10.1103/PhysRevE.60.2721. URL: https://link.aps.org/doi/10.1103/PhysRevE.60.2721.
[5] Herbert B. Callen and Theodore A. Welton. “Irreversibility and Generalized Noise”. In: Phys. Rev. 83 (1 1951), pp. 34–40. DOI: 10.1103/
PhysRev.83.34. URL: https://link.aps.org/doi/10.1103/ PhysRev.83.34.
[6] Luca Peliti and Simone Pigolotti. Stochastic Thermodynamics: An Introduction. Princeton University Press, 2021.
[7] Ken Sekimoto. “Langevin Equation and Thermodynamics”. In: Progress of Theoretical Physics Supplement 130 (Jan. 1998), pp. 17–27. ISSN: 0375-9687.
DOI: 10.1143/PTPS.130.17. eprint: https://academic.oup.com/ ptps/article-pdf/doi/10.1143/PTPS.130.17/5213518/130-
17.pdf. URL: https://doi.org/10.1143/PTPS.130.17.
[8] Ken Sekimoto. Stochastic Energetics. English. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. ISBN: 9786613559944; 6613559946; 1280382031;
9781280382031; 3642054110; 9783642054112. DOI: 10.1007/978-3-642-
05411-2.. URL: https://doi.org/10.1007/978-3-642-05411-
2..
[9] Jan Liphardt et al. “Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski’s Equality”. In: Science 296.5574 (2002), pp. 1832–1835. DOI: 10.1126/science.1071152. URL: https://www.science.org/doi/abs/10.1126/science.
1071152.
[10] G. M. Wang et al. “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales”. In: Phys. Rev. Lett. 89 (5 July 2002), p. 050601. DOI: 10.1103/
PhysRevLett.89.050601. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.89.050601.
[11] D Collin et al. “Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies”. en. In: Nature 437.7056 (Sept. 2005), pp. 231–234.
[12] Sudeesh Krishnamurthy et al. “A micrometre-sized heat engine operating between bacterial reservoirs”. In: Nature Physics 12.12 (2016), pp. 1134–
1138. ISSN: 1745-2481. DOI: 10.1038/nphys3870. URL: https://doi. org/10.1038/nphys3870.
[13] J. A. C. Albay et al. “Shift a laser beam back and forth to exchange heat and work in thermodynamics”. In: Sci Rep 11.1 (2021), p. 4394. ISSN: 2045-2322 (Electronic) 2045-2322 (Linking). DOI: 10.1038/s41598-021-83824-7.
URL: https://www.ncbi.nlm.nih.gov/pubmed/33623104.
[14] Thai M. Hoang et al. “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States”. In: Phys. Rev. Lett. 120 (8 2018), p. 080602. DOI: 10.1103/
PhysRevLett.120.080602. URL: https://link.aps.org/doi/ 10.1103/PhysRevLett.120.080602.
[15] Loic Rondin et al. “Direct measurement of Kramers turnover with a levitated nanoparticle”. In: Nature Nanotechnology 12.12 (Dec. 2017), pp. 1130–
1133. ISSN: 1748-3395. DOI: 10.1038/nnano.2017.198. URL: https:
//doi.org/10.1038/nnano.2017.198.
[16] H.A. Kramers. “Brownian motion in a field of force and the diffusion model of chemical reactions”. In: Physica 7.4 (1940), pp. 284–304. ISSN:
0031-8914. DOI: https://doi.org/10.1016/S0031-8914(40) 90098-2. URL: https://www.sciencedirect.com/science/ article/pii/S0031891440900982.
[17] Tongcang Li, Simon Kheifets, and Mark G. Raizen. “Millikelvin cooling of an optically trapped microsphere in vacuum”. In: Nature Physics 7.7 (July 2011), pp. 527–530. ISSN: 1745-2481. DOI: 10.1038/nphys1952. URL: https://doi.org/10.1038/nphys1952.
[18] Nikolai Kiesel et al. “Cavity cooling of an optically levitated submicron particle”. In: Proceedings of the National Academy of Sciences 110.35 (2013), pp. 14180–14185. DOI: 10.1073/pnas.1309167110. eprint: https:
//www.pnas.org/doi/pdf/10.1073/pnas.1309167110. URL: https://www.pnas.org/doi/abs/10.1073/pnas.1309167110.
[19] Oscar Kremer et al. “All-electrical cooling of an optically levitated nanoparticle”. In: Phys. Rev. Appl. 22 (2 2024), p. 024010. DOI: 10.1103/
PhysRevApplied.22.024010. URL: https://link.aps.org/doi/ 10.1103/PhysRevApplied.22.024010.
[20] Jialiang Gao et al. “Feedback cooling a levitated nanoparticle’s libration to below 100 phonons”. In: Phys. Rev. Res. 6 (3 July 2024), p. 033009. DOI:
10.1103/PhysRevResearch.6.033009. URL: https://link.aps.
org/doi/10.1103/PhysRevResearch.6.033009.
[21] Yuanbin Jin et al. Towards real-world applications of levitated optomechanics.
2024. arXiv: 2407.12496[physics.optics]. URL: https://arxiv. org/abs/2407.12496.
[22] A. Ashkin and J. M. Dziedzic. “Optical levitation in high vacuum”. In: Applied Physics Letters 28.6 (1976), pp. 333–335. DOI: 10.1063/1.88748. eprint: https://doi.org/10.1063/1.88748. URL: https://doi. org/10.1063/1.88748.
[23] Tongcang Li. Fundamental Tests of Physics with Optically Trapped Microspheres. 1st ed. Springer Theses. New York, NY: Springer, 2012, pp. XII,
125. ISBN: 978-1-4614-6030-5. DOI: https://doi.org/10.1007/9781-4614-6031-2.
[24] E. Weisman et al. “An apparatus for in-vacuum loading of nanoparticles into an optical trap”. In: Rev Sci Instrum 93.11 (2022), p. 115115. ISSN: 10897623 (Electronic) 0034-6748 (Linking). DOI: 10.1063/5.0118083. URL: https://www.ncbi.nlm.nih.gov/pubmed/36461504.
[25] Ayub Khodaee et al. “Dry launching of silica nanoparticles in vacuum”. In: AIP Advances 12.12 (2022), p. 125023. DOI: 10.1063/5.0124029. URL: https://aip.scitation.org/doi/abs/10.1063/5.0124029.
[26] M. D. Summers, D. R. Burnham, and D. McGloin. “Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps”. In: Opt. Express 16.11 (2008), pp. 7739–7747. DOI: 10.1364/OE.
16.007739. URL: https://opg.optica.org/oe/abstract.cfm?
URI=oe-16-11-7739.
[27] A. Ashkin. “Acceleration and Trapping of Particles by Radiation Pressure”. In: Phys. Rev. Lett. 24 (4 Jan. 1970), pp. 156–159. DOI: 10.1103/
PhysRevLett.24.156. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.24.156.
[28] A. Ashkin. “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime”. In: Biophysical Journal 61.2 (1992), pp. 569–
582. ISSN: 0006-3495. DOI: https://doi.org/10.1016/S00063495(92)81860-X. URL: https://www.sciencedirect.com/ science/article/pii/S000634959281860X.
[29] Yasuhiro Harada and Toshimitsu Asakura. “Radiation forces on a dielectric sphere in the Rayleigh scattering regime”. In: Optics Communications 124.5 (1996), pp. 529–541. ISSN: 0030-4018. DOI: https:// doi.org/10.1016/0030-4018(95)00753-9. URL: https: / / www . sciencedirect . com / science / article / pii /
0030401895007539.
[30] A. Ashkin and J. M. Dziedzic. “Optical Levitation by Radiation Pressure”. In: Applied Physics Letters 19.8 (1971), pp. 283–285. DOI: 10.1063/1.
1653919. eprint: https://doi.org/10.1063/1.1653919. URL:
https://doi.org/10.1063/1.1653919.
[31] Amir Torki. “Mechanical Transfer of Optically Trapped Nanoparticle”. MA thesis. KTH, School of Electrical Engineering (EES), 2016.
[32] Jan Gieseler. “Dynamics of optically levitated nanoparticles in high vac-
uum”. PhD thesis. 2014. DOI: 10.5821/dissertation-2117-95281.
[33] C. H. Li et al. “Fast size estimation of single-levitated nanoparticles in a vacuum optomechanical system”. In: Opt Lett 46.18 (2021), pp. 4614– 4617. ISSN: 1539-4794 (Electronic) 0146-9592 (Linking). DOI: 10.1364/
OL.436041. URL: https://www.ncbi.nlm.nih.gov/pubmed/ 34525061.
[34] Damien Raynal. “Controlled dynamics of a levitated nanoparticle in a tailored optical potential”. Theses. Universite Paris-Saclay, Oct. 2023. URL: https://theses.hal.science/tel-04510266.
[35] Akbar Samadi and Nader S. Reihani. “Optimal beam diameter for optical tweezers”. In: Opt. Lett. 35.10 (2010), pp. 1494–1496. DOI: 10.1364/OL.
35.001494. URL: https://opg.optica.org/ol/abstract.cfm?
URI=ol-35-10-1494.
[36] James A. Lock and Gerard Gouesbet. “Generalized Lorenz–Mie theory and applications”. In: Journal of Quantitative Spectroscopy and Radiative Transfer 110.11 (2009). Light Scattering: Mie and More Commemorating 100 years of Mie’s 1908 publication, pp. 800–807. ISSN: 0022-4073. DOI:
https://doi.org/10.1016/j.jqsrt.2008.11.013. URL: https://www.sciencedirect.com/science/article/pii/ S0022407308002653.
[37] Timo A Nieminen et al. “Optical tweezers computational toolbox”. In: Journal of Optics A: Pure and Applied Optics 9.8 (2007), S196. DOI: 10.1088/
1464-4258/9/8/S12. URL: https://dx.doi.org/10.1088/14644258/9/8/S12.
[38] Christian Matzler. MATLAB Functions for Mie Scattering and Absorption, Version 1. 2002.
[39] Martin Poinsinet de Sivry-Houle, Nicolas Godbout, and Caroline Boudoux. “PyMieSim: an open-source library for fast and flexible far-field Mie scattering simulations”. In: Opt. Continuum 2.3 (2023), pp. 520–534.
DOI: 10.1364/OPTCON.473102. URL: https://opg.optica.org/ optcon/abstract.cfm?URI=optcon-2-3-520.
[40] Don S. Lemons and Anthony Gythiel. “Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la theorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]”. In: American Journal of
Physics 65.11 (Nov. 1997), pp. 1079–1081. ISSN: 0002-9505. DOI: 10.1119/
1.18725. eprint: https://pubs.aip.org/aapt/ajp/articlepdf/65/11/1079/12107627/1079\_1\_online.pdf. URL: https:
//doi.org/10.1119/1.18725.
[41] G. E. Uhlenbeck and L. S. Ornstein. “On the Theory of the Brownian Motion”. In: Phys. Rev. 36 (5 1930), pp. 823–841. DOI: 10.1103/PhysRev.
36.823. URL: https://link.aps.org/doi/10.1103/PhysRev.
36.823.
[42] R. Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press,
2001. ISBN: 9780198032151. URL: https://books.google.com.tw/ books?id=4cI5136OdoMC.
[43] S. A. Beresnev, V. G. Chernyak, and G. A. Fomyagin. “Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization”. In: Journal of Fluid Mechanics 219 (1990), 405–421. DOI: 10.1017/
S0022112090003007.
[44] Simon F. Norrelykke and Henrik Flyvbjerg. “Harmonic Oscillator in Heat Bath: Exact simulation of time-lapse-recorded data, exact analytical benchmark statistics”. In: Phys. Rev. E 83, 041103 (2011) 83.4 (Feb. 2, 2011), p. 041103. ISSN: 1550-2376. DOI: 10.1103/physreve.83.041103. arXiv: 1102.0524[physics.data-an].
[45] Kirstine Berg-Sorensen and Henrik Flyvbjerg. “Power spectrum analysis for optical tweezers”. In: Review of Scientific Instruments 75.3 (Mar. 2004), pp. 594–612. ISSN: 0034-6748. DOI: 10.1063/1.1645654. eprint: https:
//pubs.aip.org/aip/rsi/article-pdf/75/3/594/19088275/ 594\_1\_online.pdf. URL: https://doi.org/10.1063/1.
1645654.
[46] Peter Asenbaum et al. “Cavity cooling of free silicon nanoparticles in high vacuum”. In: Nature Communications 4.1 (2013), p. 2743. ISSN: 2041-1723.
DOI: 10.1038/ncomms3743. URL: https://doi.org/10.1038/ ncomms3743.
[47] Lars-Oliver Heim et al. “Adhesion and Friction Forces between Spherical Micrometer-Sized Particles”. In: Phys. Rev. Lett. 83 (16 1999), pp. 3328–3331.
DOI: 10.1103/PhysRevLett.83.3328. URL: https://link.aps. org/doi/10.1103/PhysRevLett.83.3328.
[48] B.V Derjaguin, V.M Muller, and Yu.P Toporov. “Effect of contact deformations on the adhesion of particles”. In: Journal of Colloid and Interface Science 53.2 (1975), pp. 314–326. ISSN: 0021-9797. DOI: https:
//doi.org/10.1016/0021- 9797(75)90018- 1. URL: https://www.sciencedirect.com/science/article/pii/ 0021979775900181.
[49] P. Duran and C. Moure. “Piezoelectric ceramics”. In: Materials Chemistry and Physics 15.3 (1986). A Special Double Issue Containing Papers presented at the International Workshop on the Properties of Ceramics and their Measurements, pp. 193–211. ISSN: 0254-0584. DOI: https:
//doi.org/10.1016/0254- 0584(86)90001- 5. URL: https://www.sciencedirect.com/science/article/pii/ 0254058486900015.
[50] LOGAN EDWARD HILLBERRY. Optically trapped microspheres as sensors of mass and sound. SPRINGER INTERNATIONAL, 2023. ISBN: 978-3-03144332-9. DOI: 10.1007/978-3-031-44332-9.
[51] Piceramic. Displacement Modes of Piezo Actuators. Accessed: 2024-12-07.
2024. URL: https://piceramic.com/en/expertise/piezotechnology/properties-piezo-actuators/displacementmodes.
[52] Frederic Giraud and Christophe Giraud-Audine. “Chapter One - Introduction”. In: Piezoelectric Actuators: Vector Control Method. Ed. by Frederic Giraud and Christophe Giraud-Audine. Butterworth-Heinemann, 2019, pp. 1–42. ISBN: 978-0-12-814186-1. DOI: https://doi.org/10.
1016 / B978 - 0 - 12 - 814186 - 1 . 00005 - 3. URL: https : / / www . sciencedirect . com / science / article / pii /
B9780128141861000053.
[53] Sergio Rapuano and fred harris. “An introduction to FFT and time domain windows”. In: Instrumentation & Measurement Magazine, IEEE 10 (Jan. 2008), pp. 32 –44. DOI: 10.1109/MIM.2007.4428580.
[54] Dani Carbonell Rubio, Willi Weber, and Enrico Klotzsch. “Maasi: A 3D printed spin coater with touchscreen”. In: HardwareX 11 (2022), e00316.
ISSN: 2468-0672. DOI: https://doi.org/10.1016/j.ohx.2022. e00316. URL: https://www.sciencedirect.com/science/ article/pii/S246806722200061X.
[55] Tasaki Hal. A Modern Introduction to Nonequilibrium Statistical Mechanics.
URL: https://www.gakushuin.ac.jp/~881791/OL/ne/e/.
[56] David P. Atherton. “Sensitive Force Measurements With Optically Trapped Micro-Spheres in High Vacuum”. PhD thesis. UUniversity of Nevada, Reno, 2015.
[57] S. Anand et al. “Aerosol droplet optical trap loading using surface acoustic wave nebulization”. In: Opt. Express 21.25 (2013), pp. 30148–30155. DOI:
10.1364/OE.21.030148. URL: https://opg.optica.org/oe/ abstract.cfm?URI=oe-21-25-30148.
[58] Isaac Chavez et al. “Development of a fast position-sensitive laser beam detector”. In: Review of Scientific Instruments 79.10 (Oct. 2008), p. 105104.
ISSN: 0034-6748. DOI: 10.1063/1.3002422. eprint: https://pubs. aip.org/aip/rsi/article-pdf/doi/10.1063/1.3002422/ 14824713/105104\_1\_online.pdf. URL: https://doi.org/10.
1063/1.3002422.
[59] Tongcang Li et al. “Measurement of the Instantaneous Velocity of a Brownian Particle”. In: Science 328.5986 (2010), pp. 1673–1675. DOI: doi:10.
1126/science.1189403. URL: https://www.science.org/doi/ abs/10.1126/science.1189403.
[60] Rainer Heintzmann. “Practical Guide to Optical Alignment”. In: Fluorescence Microscopy. John Wiley & Sons, Ltd, 2017. Chap. B, pp. 463–471. ISBN:
9783527687732. DOI: https://doi.org/10.1002/9783527687732. app2. eprint: https://onlinelibrary.wiley.com/doi/pdf/

10.1002/9783527687732.app2. URL: https://onlinelibrary. wiley.com/doi/abs/10.1002/9783527687732.app2.
指導教授 田溶根(Yonggun Jun) 審核日期 2025-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明