參考文獻 |
[1] F. Reif. Fundamentals of Statistical and Thermal Physics. Waveland Press,
2009. ISBN: 9781478610052. URL: https://books.google.com.tw/ books?id=ObsbAAAAQBAJ.
[2] Carlos Bustamante, Jan Liphardt, and Felix Ritort. “The Nonequilibrium Thermodynamics of Small Systems”. In: Physics Today 58.7 (July 2005), pp. 43–48. ISSN: 0031-9228. DOI: 10.1063/1.2012462. eprint: https:
//pubs.aip.org/physicstoday/article-pdf/58/7/43/ 16729192/43\_1\_online.pdf. URL: https://doi.org/10.
1063/1.2012462.
[3] C. Jarzynski. “Nonequilibrium Equality for Free Energy Differences”. In: Phys. Rev. Lett. 78 (14 1997), pp. 2690–2693. DOI: 10 . 1103 /
PhysRevLett.78.2690. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.78.2690.
[4] Gavin E. Crooks. “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences”. In: Phys. Rev. E 60 (3 1999), pp. 2721–2726. DOI: 10.1103/PhysRevE.60.2721. URL: https://link.aps.org/doi/10.1103/PhysRevE.60.2721.
[5] Herbert B. Callen and Theodore A. Welton. “Irreversibility and Generalized Noise”. In: Phys. Rev. 83 (1 1951), pp. 34–40. DOI: 10.1103/
PhysRev.83.34. URL: https://link.aps.org/doi/10.1103/ PhysRev.83.34.
[6] Luca Peliti and Simone Pigolotti. Stochastic Thermodynamics: An Introduction. Princeton University Press, 2021.
[7] Ken Sekimoto. “Langevin Equation and Thermodynamics”. In: Progress of Theoretical Physics Supplement 130 (Jan. 1998), pp. 17–27. ISSN: 0375-9687.
DOI: 10.1143/PTPS.130.17. eprint: https://academic.oup.com/ ptps/article-pdf/doi/10.1143/PTPS.130.17/5213518/130-
17.pdf. URL: https://doi.org/10.1143/PTPS.130.17.
[8] Ken Sekimoto. Stochastic Energetics. English. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. ISBN: 9786613559944; 6613559946; 1280382031;
9781280382031; 3642054110; 9783642054112. DOI: 10.1007/978-3-642-
05411-2.. URL: https://doi.org/10.1007/978-3-642-05411-
2..
[9] Jan Liphardt et al. “Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski’s Equality”. In: Science 296.5574 (2002), pp. 1832–1835. DOI: 10.1126/science.1071152. URL: https://www.science.org/doi/abs/10.1126/science.
1071152.
[10] G. M. Wang et al. “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales”. In: Phys. Rev. Lett. 89 (5 July 2002), p. 050601. DOI: 10.1103/
PhysRevLett.89.050601. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.89.050601.
[11] D Collin et al. “Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies”. en. In: Nature 437.7056 (Sept. 2005), pp. 231–234.
[12] Sudeesh Krishnamurthy et al. “A micrometre-sized heat engine operating between bacterial reservoirs”. In: Nature Physics 12.12 (2016), pp. 1134–
1138. ISSN: 1745-2481. DOI: 10.1038/nphys3870. URL: https://doi. org/10.1038/nphys3870.
[13] J. A. C. Albay et al. “Shift a laser beam back and forth to exchange heat and work in thermodynamics”. In: Sci Rep 11.1 (2021), p. 4394. ISSN: 2045-2322 (Electronic) 2045-2322 (Linking). DOI: 10.1038/s41598-021-83824-7.
URL: https://www.ncbi.nlm.nih.gov/pubmed/33623104.
[14] Thai M. Hoang et al. “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States”. In: Phys. Rev. Lett. 120 (8 2018), p. 080602. DOI: 10.1103/
PhysRevLett.120.080602. URL: https://link.aps.org/doi/ 10.1103/PhysRevLett.120.080602.
[15] Loic Rondin et al. “Direct measurement of Kramers turnover with a levitated nanoparticle”. In: Nature Nanotechnology 12.12 (Dec. 2017), pp. 1130–
1133. ISSN: 1748-3395. DOI: 10.1038/nnano.2017.198. URL: https:
//doi.org/10.1038/nnano.2017.198.
[16] H.A. Kramers. “Brownian motion in a field of force and the diffusion model of chemical reactions”. In: Physica 7.4 (1940), pp. 284–304. ISSN:
0031-8914. DOI: https://doi.org/10.1016/S0031-8914(40) 90098-2. URL: https://www.sciencedirect.com/science/ article/pii/S0031891440900982.
[17] Tongcang Li, Simon Kheifets, and Mark G. Raizen. “Millikelvin cooling of an optically trapped microsphere in vacuum”. In: Nature Physics 7.7 (July 2011), pp. 527–530. ISSN: 1745-2481. DOI: 10.1038/nphys1952. URL: https://doi.org/10.1038/nphys1952.
[18] Nikolai Kiesel et al. “Cavity cooling of an optically levitated submicron particle”. In: Proceedings of the National Academy of Sciences 110.35 (2013), pp. 14180–14185. DOI: 10.1073/pnas.1309167110. eprint: https:
//www.pnas.org/doi/pdf/10.1073/pnas.1309167110. URL: https://www.pnas.org/doi/abs/10.1073/pnas.1309167110.
[19] Oscar Kremer et al. “All-electrical cooling of an optically levitated nanoparticle”. In: Phys. Rev. Appl. 22 (2 2024), p. 024010. DOI: 10.1103/
PhysRevApplied.22.024010. URL: https://link.aps.org/doi/ 10.1103/PhysRevApplied.22.024010.
[20] Jialiang Gao et al. “Feedback cooling a levitated nanoparticle’s libration to below 100 phonons”. In: Phys. Rev. Res. 6 (3 July 2024), p. 033009. DOI:
10.1103/PhysRevResearch.6.033009. URL: https://link.aps.
org/doi/10.1103/PhysRevResearch.6.033009.
[21] Yuanbin Jin et al. Towards real-world applications of levitated optomechanics.
2024. arXiv: 2407.12496[physics.optics]. URL: https://arxiv. org/abs/2407.12496.
[22] A. Ashkin and J. M. Dziedzic. “Optical levitation in high vacuum”. In: Applied Physics Letters 28.6 (1976), pp. 333–335. DOI: 10.1063/1.88748. eprint: https://doi.org/10.1063/1.88748. URL: https://doi. org/10.1063/1.88748.
[23] Tongcang Li. Fundamental Tests of Physics with Optically Trapped Microspheres. 1st ed. Springer Theses. New York, NY: Springer, 2012, pp. XII,
125. ISBN: 978-1-4614-6030-5. DOI: https://doi.org/10.1007/9781-4614-6031-2.
[24] E. Weisman et al. “An apparatus for in-vacuum loading of nanoparticles into an optical trap”. In: Rev Sci Instrum 93.11 (2022), p. 115115. ISSN: 10897623 (Electronic) 0034-6748 (Linking). DOI: 10.1063/5.0118083. URL: https://www.ncbi.nlm.nih.gov/pubmed/36461504.
[25] Ayub Khodaee et al. “Dry launching of silica nanoparticles in vacuum”. In: AIP Advances 12.12 (2022), p. 125023. DOI: 10.1063/5.0124029. URL: https://aip.scitation.org/doi/abs/10.1063/5.0124029.
[26] M. D. Summers, D. R. Burnham, and D. McGloin. “Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps”. In: Opt. Express 16.11 (2008), pp. 7739–7747. DOI: 10.1364/OE.
16.007739. URL: https://opg.optica.org/oe/abstract.cfm?
URI=oe-16-11-7739.
[27] A. Ashkin. “Acceleration and Trapping of Particles by Radiation Pressure”. In: Phys. Rev. Lett. 24 (4 Jan. 1970), pp. 156–159. DOI: 10.1103/
PhysRevLett.24.156. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.24.156.
[28] A. Ashkin. “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime”. In: Biophysical Journal 61.2 (1992), pp. 569–
582. ISSN: 0006-3495. DOI: https://doi.org/10.1016/S00063495(92)81860-X. URL: https://www.sciencedirect.com/ science/article/pii/S000634959281860X.
[29] Yasuhiro Harada and Toshimitsu Asakura. “Radiation forces on a dielectric sphere in the Rayleigh scattering regime”. In: Optics Communications 124.5 (1996), pp. 529–541. ISSN: 0030-4018. DOI: https:// doi.org/10.1016/0030-4018(95)00753-9. URL: https: / / www . sciencedirect . com / science / article / pii /
0030401895007539.
[30] A. Ashkin and J. M. Dziedzic. “Optical Levitation by Radiation Pressure”. In: Applied Physics Letters 19.8 (1971), pp. 283–285. DOI: 10.1063/1.
1653919. eprint: https://doi.org/10.1063/1.1653919. URL:
https://doi.org/10.1063/1.1653919.
[31] Amir Torki. “Mechanical Transfer of Optically Trapped Nanoparticle”. MA thesis. KTH, School of Electrical Engineering (EES), 2016.
[32] Jan Gieseler. “Dynamics of optically levitated nanoparticles in high vac-
uum”. PhD thesis. 2014. DOI: 10.5821/dissertation-2117-95281.
[33] C. H. Li et al. “Fast size estimation of single-levitated nanoparticles in a vacuum optomechanical system”. In: Opt Lett 46.18 (2021), pp. 4614– 4617. ISSN: 1539-4794 (Electronic) 0146-9592 (Linking). DOI: 10.1364/
OL.436041. URL: https://www.ncbi.nlm.nih.gov/pubmed/ 34525061.
[34] Damien Raynal. “Controlled dynamics of a levitated nanoparticle in a tailored optical potential”. Theses. Universite Paris-Saclay, Oct. 2023. URL: https://theses.hal.science/tel-04510266.
[35] Akbar Samadi and Nader S. Reihani. “Optimal beam diameter for optical tweezers”. In: Opt. Lett. 35.10 (2010), pp. 1494–1496. DOI: 10.1364/OL.
35.001494. URL: https://opg.optica.org/ol/abstract.cfm?
URI=ol-35-10-1494.
[36] James A. Lock and Gerard Gouesbet. “Generalized Lorenz–Mie theory and applications”. In: Journal of Quantitative Spectroscopy and Radiative Transfer 110.11 (2009). Light Scattering: Mie and More Commemorating 100 years of Mie’s 1908 publication, pp. 800–807. ISSN: 0022-4073. DOI:
https://doi.org/10.1016/j.jqsrt.2008.11.013. URL: https://www.sciencedirect.com/science/article/pii/ S0022407308002653.
[37] Timo A Nieminen et al. “Optical tweezers computational toolbox”. In: Journal of Optics A: Pure and Applied Optics 9.8 (2007), S196. DOI: 10.1088/
1464-4258/9/8/S12. URL: https://dx.doi.org/10.1088/14644258/9/8/S12.
[38] Christian Matzler. MATLAB Functions for Mie Scattering and Absorption, Version 1. 2002.
[39] Martin Poinsinet de Sivry-Houle, Nicolas Godbout, and Caroline Boudoux. “PyMieSim: an open-source library for fast and flexible far-field Mie scattering simulations”. In: Opt. Continuum 2.3 (2023), pp. 520–534.
DOI: 10.1364/OPTCON.473102. URL: https://opg.optica.org/ optcon/abstract.cfm?URI=optcon-2-3-520.
[40] Don S. Lemons and Anthony Gythiel. “Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la theorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]”. In: American Journal of
Physics 65.11 (Nov. 1997), pp. 1079–1081. ISSN: 0002-9505. DOI: 10.1119/
1.18725. eprint: https://pubs.aip.org/aapt/ajp/articlepdf/65/11/1079/12107627/1079\_1\_online.pdf. URL: https:
//doi.org/10.1119/1.18725.
[41] G. E. Uhlenbeck and L. S. Ornstein. “On the Theory of the Brownian Motion”. In: Phys. Rev. 36 (5 1930), pp. 823–841. DOI: 10.1103/PhysRev.
36.823. URL: https://link.aps.org/doi/10.1103/PhysRev.
36.823.
[42] R. Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press,
2001. ISBN: 9780198032151. URL: https://books.google.com.tw/ books?id=4cI5136OdoMC.
[43] S. A. Beresnev, V. G. Chernyak, and G. A. Fomyagin. “Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization”. In: Journal of Fluid Mechanics 219 (1990), 405–421. DOI: 10.1017/
S0022112090003007.
[44] Simon F. Norrelykke and Henrik Flyvbjerg. “Harmonic Oscillator in Heat Bath: Exact simulation of time-lapse-recorded data, exact analytical benchmark statistics”. In: Phys. Rev. E 83, 041103 (2011) 83.4 (Feb. 2, 2011), p. 041103. ISSN: 1550-2376. DOI: 10.1103/physreve.83.041103. arXiv: 1102.0524[physics.data-an].
[45] Kirstine Berg-Sorensen and Henrik Flyvbjerg. “Power spectrum analysis for optical tweezers”. In: Review of Scientific Instruments 75.3 (Mar. 2004), pp. 594–612. ISSN: 0034-6748. DOI: 10.1063/1.1645654. eprint: https:
//pubs.aip.org/aip/rsi/article-pdf/75/3/594/19088275/ 594\_1\_online.pdf. URL: https://doi.org/10.1063/1.
1645654.
[46] Peter Asenbaum et al. “Cavity cooling of free silicon nanoparticles in high vacuum”. In: Nature Communications 4.1 (2013), p. 2743. ISSN: 2041-1723.
DOI: 10.1038/ncomms3743. URL: https://doi.org/10.1038/ ncomms3743.
[47] Lars-Oliver Heim et al. “Adhesion and Friction Forces between Spherical Micrometer-Sized Particles”. In: Phys. Rev. Lett. 83 (16 1999), pp. 3328–3331.
DOI: 10.1103/PhysRevLett.83.3328. URL: https://link.aps. org/doi/10.1103/PhysRevLett.83.3328.
[48] B.V Derjaguin, V.M Muller, and Yu.P Toporov. “Effect of contact deformations on the adhesion of particles”. In: Journal of Colloid and Interface Science 53.2 (1975), pp. 314–326. ISSN: 0021-9797. DOI: https:
//doi.org/10.1016/0021- 9797(75)90018- 1. URL: https://www.sciencedirect.com/science/article/pii/ 0021979775900181.
[49] P. Duran and C. Moure. “Piezoelectric ceramics”. In: Materials Chemistry and Physics 15.3 (1986). A Special Double Issue Containing Papers presented at the International Workshop on the Properties of Ceramics and their Measurements, pp. 193–211. ISSN: 0254-0584. DOI: https:
//doi.org/10.1016/0254- 0584(86)90001- 5. URL: https://www.sciencedirect.com/science/article/pii/ 0254058486900015.
[50] LOGAN EDWARD HILLBERRY. Optically trapped microspheres as sensors of mass and sound. SPRINGER INTERNATIONAL, 2023. ISBN: 978-3-03144332-9. DOI: 10.1007/978-3-031-44332-9.
[51] Piceramic. Displacement Modes of Piezo Actuators. Accessed: 2024-12-07.
2024. URL: https://piceramic.com/en/expertise/piezotechnology/properties-piezo-actuators/displacementmodes.
[52] Frederic Giraud and Christophe Giraud-Audine. “Chapter One - Introduction”. In: Piezoelectric Actuators: Vector Control Method. Ed. by Frederic Giraud and Christophe Giraud-Audine. Butterworth-Heinemann, 2019, pp. 1–42. ISBN: 978-0-12-814186-1. DOI: https://doi.org/10.
1016 / B978 - 0 - 12 - 814186 - 1 . 00005 - 3. URL: https : / / www . sciencedirect . com / science / article / pii /
B9780128141861000053.
[53] Sergio Rapuano and fred harris. “An introduction to FFT and time domain windows”. In: Instrumentation & Measurement Magazine, IEEE 10 (Jan. 2008), pp. 32 –44. DOI: 10.1109/MIM.2007.4428580.
[54] Dani Carbonell Rubio, Willi Weber, and Enrico Klotzsch. “Maasi: A 3D printed spin coater with touchscreen”. In: HardwareX 11 (2022), e00316.
ISSN: 2468-0672. DOI: https://doi.org/10.1016/j.ohx.2022. e00316. URL: https://www.sciencedirect.com/science/ article/pii/S246806722200061X.
[55] Tasaki Hal. A Modern Introduction to Nonequilibrium Statistical Mechanics.
URL: https://www.gakushuin.ac.jp/~881791/OL/ne/e/.
[56] David P. Atherton. “Sensitive Force Measurements With Optically Trapped Micro-Spheres in High Vacuum”. PhD thesis. UUniversity of Nevada, Reno, 2015.
[57] S. Anand et al. “Aerosol droplet optical trap loading using surface acoustic wave nebulization”. In: Opt. Express 21.25 (2013), pp. 30148–30155. DOI:
10.1364/OE.21.030148. URL: https://opg.optica.org/oe/ abstract.cfm?URI=oe-21-25-30148.
[58] Isaac Chavez et al. “Development of a fast position-sensitive laser beam detector”. In: Review of Scientific Instruments 79.10 (Oct. 2008), p. 105104.
ISSN: 0034-6748. DOI: 10.1063/1.3002422. eprint: https://pubs. aip.org/aip/rsi/article-pdf/doi/10.1063/1.3002422/ 14824713/105104\_1\_online.pdf. URL: https://doi.org/10.
1063/1.3002422.
[59] Tongcang Li et al. “Measurement of the Instantaneous Velocity of a Brownian Particle”. In: Science 328.5986 (2010), pp. 1673–1675. DOI: doi:10.
1126/science.1189403. URL: https://www.science.org/doi/ abs/10.1126/science.1189403.
[60] Rainer Heintzmann. “Practical Guide to Optical Alignment”. In: Fluorescence Microscopy. John Wiley & Sons, Ltd, 2017. Chap. B, pp. 463–471. ISBN:
9783527687732. DOI: https://doi.org/10.1002/9783527687732. app2. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/9783527687732.app2. URL: https://onlinelibrary. wiley.com/doi/abs/10.1002/9783527687732.app2. |