參考文獻 |
(1) Morgan, D. A. Dyer. An Introduction to Zeolite Molecular Sieves. Chichester (John Wiley & Sons), 1988. xiii+ 149 pp., 94 figs. Price£ 29.50. Mineralogical Magazine 1989, 53 (373), 662-662.
(2) Budi, C. S.; Deka, J. R.; Saikia, D.; Kao, H.-M.; Yang, Y.-C. Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds. Journal of hazardous materials 2020, 384, 121270.
(3) Weckhuysen, B. M.; Yu, J. Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews 2015, 44 (20), 7022-7024.
(4) He, Y.; Li, Z.; Ding, X.; Xu, B.; Wang, J.; Li, Y.; Chen, F.; Meng, F.; Song, W.; Zhang, Y. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioactive Materials 2022, 8, 109-123.
(5) Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S.-Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
(6) Djaeni, M.; Bartels, P.; Sanders, J.; Straten, G. v.; Boxtel, A. v. Process integration for food drying with air dehumidified by zeolites. Drying Technology 2007, 25 (1), 225-239.
(7) Deka, J. R.; Saikia, D.; Chen, P.-H.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C. N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. Journal of Industrial and Engineering Chemistry 2021, 104, 529-543.
(8) Gao, M.; Zeng, J.; Liang, K.; Zhao, D.; Kong, B. Interfacial assembly of mesoporous silica‐based optical heterostructures for sensing applications. Advanced Functional Materials 2020, 30 (9), 1906950.
(9) Yan, Y.; Chen, G.; She, P.; Zhong, G.; Yan, W.; Guan, B. Y.; Yamauchi, Y. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Advanced Materials 2020, 32 (44), 2004654.
(10) Chen, W.; Glackin, C. A.; Horwitz, M. A.; Zink, J. I. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Accounts of chemical research 2019, 52 (6), 1531-1542.
(11) Yang, B.; Chen, Y.; Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chemical reviews 2019, 119 (8), 4881-4985.
(12) Duan, L.; Wang, C.; Zhang, W.; Ma, B.; Deng, Y.; Li, W.; Zhao, D. Interfacial assembly and applications of functional mesoporous materials. Chemical reviews 2021, 121 (23), 14349-14429.
(13) Zhao, X. S.; Lu, G.; Millar, G. J. Advances in mesoporous molecular sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35 (7), 2075-2090.
(14) Kresge, a. C.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J.; Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710-712.
(15) Hao, N.; Li, L.; Tang, F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews 2017, 62 (2), 57-77.
(16) Bouchoucha, M.; Cote, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F. Size-controlled functionalized mesoporous silica nanoparticles for tunable drug release and enhanced anti-tumoral activity. Chemistry of Materials 2016, 28 (12), 4243-4258.
(17) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
(18) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
(19) Sun, B.; Zhou, G.; Zhang, H. Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review. Progress in Solid State Chemistry 2016, 44 (1), 1-19.
(20) Li, W.; Zhao, D. An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
(21) Fayed, T. A.; Shaaban, M. H.; El-Nahass, M. N.; Hassan, F. M. Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection. International Journal of Chemical and Applied Biological Sciences 2014, 1 (6), 74.
(22) Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
(23) Stuart, M. C. A.; Boekema, E. J. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid–detergent systems. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007, 1768 (11), 2681-2689. DOI: https://doi.org/10.1016/j.bbamem.2007.06.024.
(24) Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews 2002, 102 (11), 4093-4138. DOI: 10.1021/cr0200062.
(25) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321. DOI: 10.1038/368317a0.
(26) Da′na, E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous and Mesoporous Materials 2017, 247, 145-157.
(27) Brühwiler, D. Postsynthetic functionalization of mesoporous silica. Nanoscale 2010, 2 (6), 887-892.
(28) Wei, J.; Shi, J.; Pan, H.; Zhao, W.; Ye, Q.; Shi, Y. Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous and Mesoporous Materials 2008, 116 (1-3), 394-399.
(29) Mercier, L.; Pinnavaia, T. J. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg (II) uptake. Environmental Science & Technology 1998, 32 (18), 2749-2754.
(30) Ho, K. Y.; McKay, G.; Yeung, K. L. Selective adsorbents from ordered mesoporous silica. Langmuir 2003, 19 (7), 3019-3024.
(31) Feinle, A.; Leichtfried, F.; Straßer, S.; Hüsing, N. Carboxylic acid-functionalized porous silica particles by a co-condensation approach. Journal of Sol-Gel Science and Technology 2017, 81, 138-146.
(32) Burkett, S. L.; Sims, S. D.; Mann, S. Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chemical Communications 1996, (11), 1367-1368.
(33) Macquarrie, D. J. Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM. Chemical Communications 1996, (16), 1961-1962.
(34) Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chemistry of Materials 1999, 11 (11), 3302-3308.
(35) Chong, A. M.; Zhao, X.; Kustedjo, A. T.; Qiao, S. Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis. Microporous and mesoporous materials 2004, 72 (1-3), 33-42.
(36) Melero, J. A.; van Grieken, R.; Morales, G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chemical reviews 2006, 106 (9), 3790-3812.
(37) Van Rhijn, W.; De Vos, D.; Sels, B.; Bossaert, W. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical communications 1998, (3), 317-318.
(38) Margolese, D.; Melero, J.; Christiansen, S.; Chmelka, B.; Stucky, G. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials 2000, 12 (8), 2448-2459.
(39) Chaudhuri, H.; Dash, S.; Sarkar, A. Single-step room-temperature in situ syntheses of sulfonic acid functionalized SBA-16 with ordered large pores: potential applications in dye adsorption and heterogeneous catalysis. Industrial & Engineering Chemistry Research 2017, 56 (11), 2943-2957.
(40) Deka, J. R.; Saikia, D.; Tsai, H. H. G.; Chen, K. T.; Kuan, W. H.; Hsu, H. C.; Kao, H. M.; Yang, Y. C. One Pot Synthesis of Cubic Mesoporous Silica KIT‐6 Functionalized with Sulfonic Acid for Catalytic Dehydration of Fructose to 5‐Hydroxymethylfurfural. ChemistrySelect 2022, 7 (45), e202202357.
(41) Kuzmić, A. E.; Radošević, M.; Bogdanić, G.; Srića, V.; Vuković, R. Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives. Fuel 2008, 87 (13-14), 2943-2950.
(42) Li, S.; Jiang, S.; Zhang, P.; Jiang, P.; Leng, Y. Protonic ionic liquids as efficient phase-separation catalysts for esterification of trimethylolpropane and acrylic acid. Journal of Molecular Liquids 2022, 360, 119403.
(43) Klee, J. E.; Renn, C.; Elsner, O. Development of Novel Polymer Technology for a New Class of Restorative Dental Materials. Journal of Adhesive Dentistry 2020, 22 (1).
(44) Lebedevaite, M.; Talacka, V.; Ostrauskaite, J. High biorenewable content acrylate photocurable resins for DLP 3D printing. Journal of Applied Polymer Science 2021, 138 (16), 50233.
(45) Decker, C.; Viet, T. N. T.; Decker, D.; Weber-Koehl, E. UV-radiation curing of acrylate/epoxide systems. Polymer 2001, 42 (13), 5531-5541.
(46) Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A review on modeling cure kinetics and mechanisms of photopolymerization. Polymers 2022, 14 (10), 2074.
(47) Maurya, S. D.; Kurmvanshi, S.; Mohanty, S.; Nayak, S. K. A review on acrylate-terminated urethane oligomers and polymers: synthesis and applications. Polymer-Plastics Technology and Engineering 2018, 57 (7), 625-656.
(48) Park, Y.-J.; Lim, D.-H.; Kim, H.-J.; Park, D.-S.; Sung, I.-K. UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives 2009, 29 (7), 710-717.
(49) Xu, H.; Qiu, F.; Wang, Y.; Wu, W.; Yang, D.; Guo, Q. UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties. Progress in Organic Coatings 2012, 73 (1), 47-53.
(50) Keller, L.; Decker, C.; Zahouily, K.; Benfarhi, S.; Le Meins, J.; Miehe-Brendle, J. Synthesis of polymer nanocomposites by UV-curing of organoclay–acrylic resins. Polymer 2004, 45 (22), 7437-7447.
(51) Tahk, D.; Bang, S.; Hyung, S.; Lim, J.; Yu, J.; Kim, J.; Jeon, N. L.; Kim, H. N. Self-detachable UV-curable polymers for open-access microfluidic platforms. Lab on a Chip 2020, 20 (22), 4215-4224.
(52) Ligon-Auer, S. C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: a review. Polymer Chemistry 2016, 7 (2), 257-286.
(53) Jiang, W.; Jin, F.-L.; Park, S.-J. Synthesis of ditrimethylolpropane acrylate with low functionality for UV-curable coatings. Journal of Industrial and Engineering Chemistry 2012, 18 (5), 1577-1581.
(54) Kim, H.-S.; Moon, S.-I. Synthesis and electrochemical performances of di (trimethylolpropane) tetraacrylate-based gel polymer electrolyte. Journal of power sources 2005, 146 (1-2), 584-588.
(55) Bahadi, M.; Salimon, J.; Derawi, D. Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification. Renewable Energy 2021, 171, 981-993.
(56) Jara, A. D.; Betemariam, A.; Woldetinsae, G.; Kim, J. Y. Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology 2019, 29 (5), 671-689.
(57) Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal 2013, 219, 499-511.
(58) Suzuki, M. Activated carbon fiber: fundamentals and applications. Carbon 1994, 32 (4), 577-586.
(59) Jjagwe, J.; Olupot, P. W.; Menya, E.; Kalibbala, H. M. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. Journal of Bioresources and Bioproducts 2021, 6 (4), 292-322.
(60) Wang, Z.; Shen, D.; Wu, C.; Gu, S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry 2018, 20 (22), 5031-5057.
(61) Page, K.; Harbottle, M.; Cleall, P.; Hutchings, T. Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate. Science of the Total Environment 2014, 487, 260-271.
(62) Keller, C.; Ludwig, C.; Davoli, F.; Wochele, J. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environmental science & technology 2005, 39 (9), 3359-3367.
(63) Parikka, M. Global biomass fuel resources. Biomass and bioenergy 2004, 27 (6), 613-620.
(64) Saidur, R.; Abdelaziz, E.; Demirbas, A.; Hossain, M.; Mekhilef, S. A review on biomass as a fuel for boilers. Renewable and sustainable energy reviews 2011, 15 (5), 2262-2289.
(65) Zhai, Z.; Lu, Y.; Liu, G.; Ding, W.-L.; Cao, B.; He, H. Recent Advances in Biomass-derived Porous Carbon Materials: Synthesis, Composition and Applications. Chemical Research in Chinese Universities 2024, 40 (1), 3-19. DOI: 10.1007/s40242-024-3259-6.
(66) Gao, Y.; Yue, Q.; Gao, B.; Li, A. Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment 2020, 746, 141094.
(67) Greco, G.; Canevesi, R. L.; Di Stasi, C.; Celzard, A.; Fierro, V.; Manya, J. J. Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation. Renewable Energy 2022, 191, 122-133.
(68) Xia, C.; Shi, S. Q. Self-activation for activated carbon from biomass: theory and parameters. Green chemistry 2016, 18 (7), 2063-2071.
(69) De, S.; Balu, A. M.; Van Der Waal, J. C.; Luque, R. Biomass‐derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 2015, 7 (11), 1608-1629.
(70) Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing. Renewable and sustainable Energy reviews 2014, 40, 673-687.
(71) Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X. Biomass derived carbon for energy storage devices. Journal of materials chemistry a 2017, 5 (6), 2411-2428.
(72) Atabani, A.; Ala′a, H.; Kumar, G.; Saratale, G. D.; Aslam, M.; Khan, H. A.; Said, Z.; Mahmoud, E. Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel 2019, 254, 115640.
(73) Vardon, D. R.; Moser, B. R.; Zheng, W.; Witkin, K.; Evangelista, R. L.; Strathmann, T. J.; Rajagopalan, K.; Sharma, B. K. Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry & Engineering 2013, 1 (10), 1286-1294.
(74) Pagett, M.; Teng, K. S.; Sullivan, G.; Zhang, W. Reusing waste coffee grounds as electrode materials: recent advances and future opportunities. Global Challenges 2023, 7 (1), 2200093.
(75) Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochemistry Communications 2008, 10 (10), 1594-1597.
(76) Li, M.; Cheng, W.-Y.; Li, Y.-C.; Wu, H.-M.; Wu, Y.-C.; Lu, H.-W.; Cheng, S.-L.; Li, L.; Chang, K.-C.; Liu, H.-J. Deformable, resilient, and mechanically-durable triboelectric nanogenerator based on recycled coffee waste for wearable power and self-powered smart sensors. Nano Energy 2021, 79, 105405.
(77) Wen, X.; Liu, H.; Zhang, L.; Zhang, J.; Fu, C.; Shi, X.; Chen, X.; Mijowska, E.; Chen, M.-J.; Wang, D.-Y. Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Bioresource technology 2019, 272, 92-98.
(78) Kim, M.-J.; Choi, S. W.; Kim, H.; Mun, S.; Lee, K. B. Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chemical Engineering Journal 2020, 397, 125404.
(79) Chan, H.; Shi, C.; Wu, Z.; Sun, S.; Zhang, S.; Yu, Z.; He, M.; Chen, G.; Wan, X.; Tian, J. Superhydrophilic three-dimensional porous spent coffee ground reduced palladium nanoparticles for efficient catalytic reduction. Journal of Colloid and Interface Science 2022, 608, 1414-1421.
(80) Stock, S.; Kostoglou, N.; Selinger, J.; Spirk, S.; Tampaxis, C.; Charalambopoulou, G.; Steriotis, T.; Rebholz, C.; Mitterer, C.; Paris, O. Coffee waste-derived nanoporous carbons for hydrogen storage. ACS Applied Energy Materials 2022, 5 (9), 10915-10926.
(81) Liu, Q.; Zhai, Z.; Guo, J.; Cheng, J.; Zhang, Y. Liquefaction of starch using solid-acid catalysts derived from spent coffee for the production of plasticized poly (vinyl alcohol) films. Carbohydrate Polymers 2021, 254, 117427.
(82) Pitaro, M.; Croce, N.; Gallo, V.; Arienzo, A.; Salvatore, G.; Antonini, G. Coumarin-induced hepatotoxicity: A narrative review. Molecules 2022, 27 (24), 9063.
(83) Wittkowsky, A. K. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. In Seminars in vascular medicine, 2003; Copyright© 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New …: Vol. 3, pp 221-230.
(84) Smyth, T.; Ramachandran, V.; Smyth, W. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. International journal of antimicrobial agents 2009, 33 (5), 421-426.
(85) Montagner, C.; de Souza, S. M.; Groposo, C.; Delle Monache, F.; Smânia, E. F.; Smânia Jr, A. Antifungal activity of coumarins. Zeitschrift für Naturforschung C 2008, 63 (1-2), 21-28.
(86) Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Current pharmaceutical design 2004, 10 (30), 3813-3833.
(87) Borges Bubols, G.; da Rocha Vianna, D.; Medina-Remon, A.; von Poser, G.; Maria Lamuela-Raventos, R.; Lucia Eifler-Lima, V.; Cristina Garcia, S. The antioxidant activity of coumarins and flavonoids. Mini reviews in medicinal chemistry 2013, 13 (3), 318-334.
(88) Al-Warhi, T.; Sabt, A.; Elkaeed, E. B.; Eldehna, W. M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chemistry 2020, 103, 104163.
(89) Tupare, S. D.; Meshram, P. Chemistry of Coumarin: A Review. 2024.
(90) Aslam, K.; Khosa, M. K.; Jahan, N.; Nosheen, S. Short communication: synthesis and applications of Coumarin. Pak. J. Pharm. Sci 2010, 23 (4), 449-454.
(91) Deutsche Chemische Gesellschaft, B. Berichte der Deutschen Chemischen Gesellschaft; Verlag Chemie., 1888.
(92) Shah, D.; Shah, N. The Kostanecki-Robinson acylation of 5-hydroxy-6-acetyl-4-methylcoumarin. Journal of the American Chemical Society 1955, 77 (6), 1699-1700.
(93) Ali, M. A. E. A. A. Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chinese Journal of Catalysis 2015, 36 (7), 1124-1130.
(94) Sinhamahapatra, A.; Sutradhar, N.; Pahari, S.; Bajaj, H. C.; Panda, A. B. Mesoporous zirconium phosphate: An efficient catalyst for the synthesis of coumarin derivatives through Pechmann condensation reaction. Applied Catalysis A: General 2011, 394 (1-2), 93-100.
(95) Kim, J.-C.; Ryoo, R.; Opanasenko, M. V.; Shamzhy, M. V.; Cejka, J. Mesoporous MFI zeolite nanosponge as a high-performance catalyst in the Pechmann condensation reaction. ACS Catalysis 2015, 5 (4), 2596-2604.
(96) Khder, A. E. R. S.; Ahmed, S. A.; Khairou, K. S.; Altass, H. M. Competent, selective and high yield of 7-hydroxy-4-methyl coumarin over sulfonated mesoporous silica as solid acid catalysts. Journal of Porous Materials 2018, 25, 1-13.
(97) Kour, M.; Paul, S. A green and convenient approach for the one-pot solvent-free synthesis of coumarins and β-amino carbonyl compounds using Lewis acid grafted sulfonated carbon@ titania composite. Monatshefte für Chemie-Chemical Monthly 2017, 148, 327-337.
(98) Ojeda, J. J.; Dittrich, M. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. Microbial Systems Biology: Methods and Protocols 2012, 187-211.
(99) Cao, R.; Liu, X.; Liu, Y.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food chemistry 2021, 342, 128258. |