博碩士論文 111223023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.145.0.146
姓名 吳聲維(Sheng-Wei Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備具有酸性官能基之中孔洞矽材與生物質衍生碳材應用於有機催化反應
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本研究分為兩個部分。在第一部分研究中,利用中孔洞矽材具高比表面積、可調控的孔洞大小及孔洞體積等優點,透過直接合成法,將磺酸官能基修飾在一系列的三維中孔洞矽材表面。經過多種鑑定後,確認合成出S16SX(X = 10, 15, 20, 25, 30 )系列催化劑的結構與穩定性。此系列催化劑具有高比表面積、孔洞一致性和富有酸性位點,期望能應用於催化雙(三羥甲基)丙烷(Di-TMP)酯化反應。透過探討不同結構之中孔洞矽材、修飾上磺酸官能基的比例、不同催化劑量及不同丙烯酸與雙(三羥甲基)丙烷比例對於選擇性產生雙(三羥甲基)丙烷二丙烯酸酯(Di-TMPDA)的影響,得知最佳反應條件為以1.8 g S16S20當作催化劑,在起始物AA與Di-TMP莫耳比為2:1時進行反應。在溫度維持95℃,並持續除水的條件下,反應24小時後產生Di-TMPDA的比例約佔總產物的65%,並能減少雙(三羥甲基)丙烷三丙烯酸酯(Di-TMPTriA)與雙(三羥甲基)丙烷四丙烯酸酯(Di-TMPTetraA)的產生,因此,使用此催化劑S16S20是具有高催化活性並能選擇性產生特定產物
Di-TMPDA。
第二部分研究中,透過水熱及KOH化學活化的方式,在高溫鍛燒下將咖啡渣製備成具孔洞性質的生質碳材。活化後的生質碳材透過4-benzene-diazoniumsulfonate與次磷酸反應,修飾上磺酸官能基,並透過元素分析、XPS、TEM等鑑定,證明成功製備出酸性生質碳材(S-WCG)。將此催化劑用於間苯二酚與乙醯乙酸乙酯的佩希曼縮合反應(Pechmann condensation),合成7-羥基-4-甲基香豆素。研究中探討鍛燒溫度、KOH比例、催化劑用量和反應溫度對催化劑催化活性的影響。最後在鍛燒溫度800°C,KOH與碳源比例為2:1條件下,所製備出的酸性咖啡渣碳材(S-WCG-800-21)在溫度130°C反應20分鐘時,得到最高的香豆素產率88%。
摘要(英) This study is divided into two parts. In the first part, taking advantage of mesoporous silica materials with high specific surface area, tunable pore size, and pore volume, sulfonic acid functional groups were directly synthesized on the surface of a series of three-dimensional mesoporous silica materials. Through SAXRD, BET, TEM, and XPS characterization, the structure and stability of the S16SX (X = 10, 15, 20, 25, 30) series catalysts were confirmed. This series of catalysts possesses high specific surface area, pore uniformity, and abundant acidic sites, and is expected to be applied in the catalytic Fischer esterification reaction of di(trimethylolpropane) (Di-TMP). By exploring the effects of different mesoporous silica structures, the ratio of sulfonic acid functional groups, different catalyst loading, and different ratios of acrylic acid to Di-TMP on the selective production of Di-TMPDA, it was found that the optimal reaction conditions were using 1.8 g of S16S20 as the catalyst with a starting material molar ratio of AA to Di-TMP of 2:1. Under the conditions of maintaining the temperature at 95°C and continuous water removal, after 24 hours of reaction, the proportion of Di-TMPDA in the total product was about 65%, and the production of Di-TMPTriA and Di-TMPTetraA was reduced. Therefore, the catalyst S16S20 exhibits high catalytic activity and can selectively produce the product Di-TMPDA.
In the second part, wasted coffee grounds were transformed into porous biochar materials through hydrothermal acidic hydrolysis and KOH chemical activation methods under high-temperature calcination. The activated biochar was functionalized with sulfonic acid groups by reacting with 4-benzene-diazoniumsulfonate and hypophosphorous acid. Elemental analysis, XPS, TEM, and other characterizations confirmed the successful preparation of acidic biochar (S-WCG). This catalyst was applied in the Pechmann condensation reaction of resorcinol with ethyl acetoacetate to synthesize 7-hydroxy-4-methylcoumarin. The study explored the effects of calcination temperature, KOH ratio, catalyst loading, and reaction temperature on the catalytic activity. Finally, under the conditions of a calcination temperature of 800°C and a KOH-to-carbon source ratio of 2:1, the acidic wasted coffee ground-derived biochar (S-WCG-800-21) achieved the highest coumarin yield of 88% at 130°C in 20 minutes.
關鍵字(中) ★ 異相催化劑
★ 中孔洞矽材
★ 酯化反應
★ 香豆素
★ 生物質衍生碳材
關鍵字(英)
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xiv
表目錄 xx
第一章 緒論 1
第壹部分 具酸性官能基之中孔洞矽材催化雙(三羥甲基)丙烷酯化反應 1
1-1中孔洞矽材 (Mesoporous Silica Materials, MSMs) 1
1-1-1中孔洞矽材之簡介 1
1-1-2中孔洞矽材的定義 2
1-1-3中孔洞矽材的合成方式 4
1-1-4界面活性劑的種類 5
1-1-5微胞形成的方式與種類 8
1-1-6微胞與矽源的作用力 9
1-2具官能基化之中孔洞矽材 12
1-2-1中孔洞矽材表面修飾法 12
1-2-2具磺酸官能基之中孔洞矽材 15
1-3雙(三羥甲基)丙烷反應 19
1-3-1丙烯酸酯介紹 19
1-3-2雙(三羥甲基)丙烷酯化反應與文獻回顧 21
第貳部分 具酸性官能基之生質碳材催化佩希曼縮合反應 24
1-4生物質碳材 24
1-4-1生物質碳材之簡介 24
1-4-2生質碳材活化方法 25
1-4-2.1 化學活化法(Chemical activation) 26
1-4-2.2 物理活化法(Physical activation) 27
1-4-2.3 自活化法(Self-activation) 28
1-4-2.4 模板法(Template method) 28
1-4-2.4 水熱法(Hydrothermal method) 29
1-4-3咖啡渣衍生生質碳材發展與應用 30
1-5佩西曼縮和反應(Pechmann condensation) 34
1-5-1香豆素介紹 34
1-5-2合成香豆素之發展 35
1-5-3佩西曼縮和反應文獻回顧 37
1-6研究目的與動機 40
第二章 實驗部分 41
2-1實驗藥品 41
2-1-1第一部份使用之藥品 41
2-1-2第二部份所使用之藥品 43
2-2實驗步驟 44
第壹部分 具酸性官能基之中孔洞矽材催化雙(三羥甲基)丙烷酯化反應 44
2-2-1合成具酸性官能基之S16SX 44
2-2-2合成具酸性官能基之LP-S16SX 45
2-2-3合成具酸性官能基之F12SX 45
2-2-4以硫酸溶液移除催化劑中模板劑 46
2-2-5催化雙(三羥甲基)丙烷為雙(三羥甲基)丙烷二丙烯酸酯實驗 46
2-2-6 S16S20催化雙(三羥甲基)丙烷重複使用實驗 47
第貳部分 具酸性官能基之生質碳材催化佩希曼縮合反應 48
2-2-7 咖啡渣衍生碳材 48
2-2-8活化咖啡渣衍生碳材 48
2-2-9合成磺酸化前驅物4-benzenediazoniumsulfonate 49
2-2-10合成具磺酸官能基之咖啡渣生質碳材(S-WCG) 49
2-2-11以具磺酸官能基之咖啡渣生質碳材催化佩希曼縮和反應 50
2-2-12催化佩希曼縮和反應重複使用實驗 50
2-3 實驗儀器 51
2-3-1實驗合成所需之儀器 51
2-3-2實驗鑑定儀器 52
2-4鑑定儀器之原理 53
2-4-1同步輻射中心光束線 (NSRRC) 53
2-4-2氮氣吸附脫附儀 (ASAP) 55
2-4-3穿透式電子顯微鏡 (TEM) 59
2-4-4掃描式電子顯微鏡 (SEM) 61
2-4-6 X光電子能譜 (XPS) 62
2-4-7粉末X光繞射儀(PXRD) 63
2-4-8傅立葉紅外線吸收光譜儀(FTIR) 64
2-4-9核磁共振(NMR) 66
2-4-11元素分析儀 (EA) 69
2-4-12高效能液相層析儀 (HPLC) 70
2-4-14熱重分析儀 (TGA) 72
2-4-15拉曼光譜儀 (Raman) 73
第三章 結果與討論 74
第壹部分 具酸性官能基之中孔洞矽材催化雙(三羥甲基)丙烷酯化反應 74
3-1材料基本性質鑑定 74
3-1-1小角度X光繞射圖 (SAXRD) 74
3-1-2氮氣吸脫附鑑定 (BET) 77
3-1-3傅立葉轉換紅外線光譜圖 (FT-IR) 82
3-1-4元素分析 (EA) 83
3-1-5掃描式電子顯微鏡 (SEM) 85
3-1-6穿透式電子顯微鏡 (TEM) 88
3-1-7 X光電子能譜 (XPS) 91
3-1-8熱重分析 (TGA) 93
3-2催化雙(三羥甲基)丙烷為丙烯酸酯實驗 96
3-2-1 以不同孔洞性質之中孔洞矽材催化雙(三羥甲基)丙烷實驗 96
3-2-2固定S16SX系列催化劑磺酸官能基比例並探討孔洞性質對催化雙(三羥甲基)丙烷反應之影響 100
3-2-3不同催化劑量催化雙(三羥甲基)丙烷反應 103
3-2-4不同起始物比例催化雙(三羥甲基)丙烷反應 106
3-2-5 催化雙(三羥甲基)丙烷反應催化劑回收實驗 109
3-2-5.1 S16S20回收利用 109
3-2-5.2 S16S20 5th SAXRD 圖譜 112
3-2-5.3 S16S20 5th SEM 圖譜 113
3-2-5.4 S16S20 5th TEM 圖譜 114
3-2-5.5 S16S20 5th EA 115
3-2-5.6 S16S20 5th TGA 圖譜 116
第貳部分 具酸性官能基之生質碳材催化佩希曼縮合反應 118
3-3 材料基本性質鑑定 118
3-3-1等溫氮氣吸脫附鑑定 (BET) 118
3-3-2掃描式電子顯微鏡 (SEM) 124
3-3-3穿透式電子顯微鏡 (TEM) 127
3-3-4大角度X光繞射圖 (WAXRD) 131
3-3-5拉曼光譜 (Raman) 132
3-3-6光電子能譜 (XPS) 134
3-3-7元素分析 (EA) 137
3-3-8熱重分析 (TGA) 138
3-4具酸性官能基之生質碳材催化佩希曼縮合反應實驗 140
3-4-1以不同孔洞性質之生質碳材催化佩希曼縮合反應實驗 140
3-4-1.1 不同活化劑製備之生質碳材催化佩希曼縮合反應 141
3-4-1.2 不同活化溫度及活化劑比例製備之生質碳材催化佩希曼縮合反應 142
3-4-2 不同反應物比例對生質碳材催化佩希曼縮合反應之影響 144
3-4-3 不同劑量之生質碳材對催化佩希曼縮合反應之影響 146
3-4-4不同反應溫度對生質碳材催化佩希曼縮合反應之影響 148
3-4-5中孔洞碳材與生質碳材對催化佩希曼縮合反應之比較 150
3-4-6 中孔洞碳材與生質碳材催化佩希曼縮合反應之回收測試 152
3-4-6.1 S-CMK9與S-WCG-800-21回收測試 152
3-4-6.2 S-CMK9與S-WCG-800-21 進行五次反應後元素分析 154
3-4-6.3 S-CMK9與S-WCG-800-21 進行五次反應後等溫氮氣吸脫附鑑定 155
3-4-9.4 S-WCG-800-21 進行五次反應後熱重分析鑑定 157
3-4-9.5 S-WCG-800-21 進行五次反應後TEM圖譜 158
3-4-9.6 S-WCG-800-21 進行五次反應後SEM圖譜 160
第四章 結論 162
第五章 參考資料 163
參考文獻 (1) Morgan, D. A. Dyer. An Introduction to Zeolite Molecular Sieves. Chichester (John Wiley & Sons), 1988. xiii+ 149 pp., 94 figs. Price£ 29.50. Mineralogical Magazine 1989, 53 (373), 662-662.
(2) Budi, C. S.; Deka, J. R.; Saikia, D.; Kao, H.-M.; Yang, Y.-C. Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds. Journal of hazardous materials 2020, 384, 121270.
(3) Weckhuysen, B. M.; Yu, J. Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews 2015, 44 (20), 7022-7024.
(4) He, Y.; Li, Z.; Ding, X.; Xu, B.; Wang, J.; Li, Y.; Chen, F.; Meng, F.; Song, W.; Zhang, Y. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioactive Materials 2022, 8, 109-123.
(5) Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S.-Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
(6) Djaeni, M.; Bartels, P.; Sanders, J.; Straten, G. v.; Boxtel, A. v. Process integration for food drying with air dehumidified by zeolites. Drying Technology 2007, 25 (1), 225-239.
(7) Deka, J. R.; Saikia, D.; Chen, P.-H.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C. N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. Journal of Industrial and Engineering Chemistry 2021, 104, 529-543.
(8) Gao, M.; Zeng, J.; Liang, K.; Zhao, D.; Kong, B. Interfacial assembly of mesoporous silica‐based optical heterostructures for sensing applications. Advanced Functional Materials 2020, 30 (9), 1906950.
(9) Yan, Y.; Chen, G.; She, P.; Zhong, G.; Yan, W.; Guan, B. Y.; Yamauchi, Y. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Advanced Materials 2020, 32 (44), 2004654.
(10) Chen, W.; Glackin, C. A.; Horwitz, M. A.; Zink, J. I. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Accounts of chemical research 2019, 52 (6), 1531-1542.
(11) Yang, B.; Chen, Y.; Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chemical reviews 2019, 119 (8), 4881-4985.
(12) Duan, L.; Wang, C.; Zhang, W.; Ma, B.; Deng, Y.; Li, W.; Zhao, D. Interfacial assembly and applications of functional mesoporous materials. Chemical reviews 2021, 121 (23), 14349-14429.
(13) Zhao, X. S.; Lu, G.; Millar, G. J. Advances in mesoporous molecular sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35 (7), 2075-2090.
(14) Kresge, a. C.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J.; Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710-712.
(15) Hao, N.; Li, L.; Tang, F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews 2017, 62 (2), 57-77.
(16) Bouchoucha, M.; Cote, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F. Size-controlled functionalized mesoporous silica nanoparticles for tunable drug release and enhanced anti-tumoral activity. Chemistry of Materials 2016, 28 (12), 4243-4258.
(17) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
(18) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
(19) Sun, B.; Zhou, G.; Zhang, H. Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review. Progress in Solid State Chemistry 2016, 44 (1), 1-19.
(20) Li, W.; Zhao, D. An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
(21) Fayed, T. A.; Shaaban, M. H.; El-Nahass, M. N.; Hassan, F. M. Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection. International Journal of Chemical and Applied Biological Sciences 2014, 1 (6), 74.
(22) Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
(23) Stuart, M. C. A.; Boekema, E. J. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid–detergent systems. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007, 1768 (11), 2681-2689. DOI: https://doi.org/10.1016/j.bbamem.2007.06.024.
(24) Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews 2002, 102 (11), 4093-4138. DOI: 10.1021/cr0200062.
(25) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321. DOI: 10.1038/368317a0.
(26) Da′na, E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous and Mesoporous Materials 2017, 247, 145-157.
(27) Brühwiler, D. Postsynthetic functionalization of mesoporous silica. Nanoscale 2010, 2 (6), 887-892.
(28) Wei, J.; Shi, J.; Pan, H.; Zhao, W.; Ye, Q.; Shi, Y. Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous and Mesoporous Materials 2008, 116 (1-3), 394-399.
(29) Mercier, L.; Pinnavaia, T. J. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg (II) uptake. Environmental Science & Technology 1998, 32 (18), 2749-2754.
(30) Ho, K. Y.; McKay, G.; Yeung, K. L. Selective adsorbents from ordered mesoporous silica. Langmuir 2003, 19 (7), 3019-3024.
(31) Feinle, A.; Leichtfried, F.; Straßer, S.; Hüsing, N. Carboxylic acid-functionalized porous silica particles by a co-condensation approach. Journal of Sol-Gel Science and Technology 2017, 81, 138-146.
(32) Burkett, S. L.; Sims, S. D.; Mann, S. Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chemical Communications 1996, (11), 1367-1368.
(33) Macquarrie, D. J. Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM. Chemical Communications 1996, (16), 1961-1962.
(34) Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chemistry of Materials 1999, 11 (11), 3302-3308.
(35) Chong, A. M.; Zhao, X.; Kustedjo, A. T.; Qiao, S. Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis. Microporous and mesoporous materials 2004, 72 (1-3), 33-42.
(36) Melero, J. A.; van Grieken, R.; Morales, G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chemical reviews 2006, 106 (9), 3790-3812.
(37) Van Rhijn, W.; De Vos, D.; Sels, B.; Bossaert, W. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical communications 1998, (3), 317-318.
(38) Margolese, D.; Melero, J.; Christiansen, S.; Chmelka, B.; Stucky, G. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials 2000, 12 (8), 2448-2459.
(39) Chaudhuri, H.; Dash, S.; Sarkar, A. Single-step room-temperature in situ syntheses of sulfonic acid functionalized SBA-16 with ordered large pores: potential applications in dye adsorption and heterogeneous catalysis. Industrial & Engineering Chemistry Research 2017, 56 (11), 2943-2957.
(40) Deka, J. R.; Saikia, D.; Tsai, H. H. G.; Chen, K. T.; Kuan, W. H.; Hsu, H. C.; Kao, H. M.; Yang, Y. C. One Pot Synthesis of Cubic Mesoporous Silica KIT‐6 Functionalized with Sulfonic Acid for Catalytic Dehydration of Fructose to 5‐Hydroxymethylfurfural. ChemistrySelect 2022, 7 (45), e202202357.
(41) Kuzmić, A. E.; Radošević, M.; Bogdanić, G.; Srića, V.; Vuković, R. Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives. Fuel 2008, 87 (13-14), 2943-2950.
(42) Li, S.; Jiang, S.; Zhang, P.; Jiang, P.; Leng, Y. Protonic ionic liquids as efficient phase-separation catalysts for esterification of trimethylolpropane and acrylic acid. Journal of Molecular Liquids 2022, 360, 119403.
(43) Klee, J. E.; Renn, C.; Elsner, O. Development of Novel Polymer Technology for a New Class of Restorative Dental Materials. Journal of Adhesive Dentistry 2020, 22 (1).
(44) Lebedevaite, M.; Talacka, V.; Ostrauskaite, J. High biorenewable content acrylate photocurable resins for DLP 3D printing. Journal of Applied Polymer Science 2021, 138 (16), 50233.
(45) Decker, C.; Viet, T. N. T.; Decker, D.; Weber-Koehl, E. UV-radiation curing of acrylate/epoxide systems. Polymer 2001, 42 (13), 5531-5541.
(46) Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A review on modeling cure kinetics and mechanisms of photopolymerization. Polymers 2022, 14 (10), 2074.
(47) Maurya, S. D.; Kurmvanshi, S.; Mohanty, S.; Nayak, S. K. A review on acrylate-terminated urethane oligomers and polymers: synthesis and applications. Polymer-Plastics Technology and Engineering 2018, 57 (7), 625-656.
(48) Park, Y.-J.; Lim, D.-H.; Kim, H.-J.; Park, D.-S.; Sung, I.-K. UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives 2009, 29 (7), 710-717.
(49) Xu, H.; Qiu, F.; Wang, Y.; Wu, W.; Yang, D.; Guo, Q. UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties. Progress in Organic Coatings 2012, 73 (1), 47-53.
(50) Keller, L.; Decker, C.; Zahouily, K.; Benfarhi, S.; Le Meins, J.; Miehe-Brendle, J. Synthesis of polymer nanocomposites by UV-curing of organoclay–acrylic resins. Polymer 2004, 45 (22), 7437-7447.
(51) Tahk, D.; Bang, S.; Hyung, S.; Lim, J.; Yu, J.; Kim, J.; Jeon, N. L.; Kim, H. N. Self-detachable UV-curable polymers for open-access microfluidic platforms. Lab on a Chip 2020, 20 (22), 4215-4224.
(52) Ligon-Auer, S. C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: a review. Polymer Chemistry 2016, 7 (2), 257-286.
(53) Jiang, W.; Jin, F.-L.; Park, S.-J. Synthesis of ditrimethylolpropane acrylate with low functionality for UV-curable coatings. Journal of Industrial and Engineering Chemistry 2012, 18 (5), 1577-1581.
(54) Kim, H.-S.; Moon, S.-I. Synthesis and electrochemical performances of di (trimethylolpropane) tetraacrylate-based gel polymer electrolyte. Journal of power sources 2005, 146 (1-2), 584-588.
(55) Bahadi, M.; Salimon, J.; Derawi, D. Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification. Renewable Energy 2021, 171, 981-993.
(56) Jara, A. D.; Betemariam, A.; Woldetinsae, G.; Kim, J. Y. Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology 2019, 29 (5), 671-689.
(57) Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal 2013, 219, 499-511.
(58) Suzuki, M. Activated carbon fiber: fundamentals and applications. Carbon 1994, 32 (4), 577-586.
(59) Jjagwe, J.; Olupot, P. W.; Menya, E.; Kalibbala, H. M. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. Journal of Bioresources and Bioproducts 2021, 6 (4), 292-322.
(60) Wang, Z.; Shen, D.; Wu, C.; Gu, S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry 2018, 20 (22), 5031-5057.
(61) Page, K.; Harbottle, M.; Cleall, P.; Hutchings, T. Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate. Science of the Total Environment 2014, 487, 260-271.
(62) Keller, C.; Ludwig, C.; Davoli, F.; Wochele, J. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environmental science & technology 2005, 39 (9), 3359-3367.
(63) Parikka, M. Global biomass fuel resources. Biomass and bioenergy 2004, 27 (6), 613-620.
(64) Saidur, R.; Abdelaziz, E.; Demirbas, A.; Hossain, M.; Mekhilef, S. A review on biomass as a fuel for boilers. Renewable and sustainable energy reviews 2011, 15 (5), 2262-2289.
(65) Zhai, Z.; Lu, Y.; Liu, G.; Ding, W.-L.; Cao, B.; He, H. Recent Advances in Biomass-derived Porous Carbon Materials: Synthesis, Composition and Applications. Chemical Research in Chinese Universities 2024, 40 (1), 3-19. DOI: 10.1007/s40242-024-3259-6.
(66) Gao, Y.; Yue, Q.; Gao, B.; Li, A. Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment 2020, 746, 141094.
(67) Greco, G.; Canevesi, R. L.; Di Stasi, C.; Celzard, A.; Fierro, V.; Manya, J. J. Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation. Renewable Energy 2022, 191, 122-133.
(68) Xia, C.; Shi, S. Q. Self-activation for activated carbon from biomass: theory and parameters. Green chemistry 2016, 18 (7), 2063-2071.
(69) De, S.; Balu, A. M.; Van Der Waal, J. C.; Luque, R. Biomass‐derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 2015, 7 (11), 1608-1629.
(70) Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing. Renewable and sustainable Energy reviews 2014, 40, 673-687.
(71) Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X. Biomass derived carbon for energy storage devices. Journal of materials chemistry a 2017, 5 (6), 2411-2428.
(72) Atabani, A.; Ala′a, H.; Kumar, G.; Saratale, G. D.; Aslam, M.; Khan, H. A.; Said, Z.; Mahmoud, E. Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel 2019, 254, 115640.
(73) Vardon, D. R.; Moser, B. R.; Zheng, W.; Witkin, K.; Evangelista, R. L.; Strathmann, T. J.; Rajagopalan, K.; Sharma, B. K. Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry & Engineering 2013, 1 (10), 1286-1294.
(74) Pagett, M.; Teng, K. S.; Sullivan, G.; Zhang, W. Reusing waste coffee grounds as electrode materials: recent advances and future opportunities. Global Challenges 2023, 7 (1), 2200093.
(75) Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochemistry Communications 2008, 10 (10), 1594-1597.
(76) Li, M.; Cheng, W.-Y.; Li, Y.-C.; Wu, H.-M.; Wu, Y.-C.; Lu, H.-W.; Cheng, S.-L.; Li, L.; Chang, K.-C.; Liu, H.-J. Deformable, resilient, and mechanically-durable triboelectric nanogenerator based on recycled coffee waste for wearable power and self-powered smart sensors. Nano Energy 2021, 79, 105405.
(77) Wen, X.; Liu, H.; Zhang, L.; Zhang, J.; Fu, C.; Shi, X.; Chen, X.; Mijowska, E.; Chen, M.-J.; Wang, D.-Y. Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Bioresource technology 2019, 272, 92-98.
(78) Kim, M.-J.; Choi, S. W.; Kim, H.; Mun, S.; Lee, K. B. Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chemical Engineering Journal 2020, 397, 125404.
(79) Chan, H.; Shi, C.; Wu, Z.; Sun, S.; Zhang, S.; Yu, Z.; He, M.; Chen, G.; Wan, X.; Tian, J. Superhydrophilic three-dimensional porous spent coffee ground reduced palladium nanoparticles for efficient catalytic reduction. Journal of Colloid and Interface Science 2022, 608, 1414-1421.
(80) Stock, S.; Kostoglou, N.; Selinger, J.; Spirk, S.; Tampaxis, C.; Charalambopoulou, G.; Steriotis, T.; Rebholz, C.; Mitterer, C.; Paris, O. Coffee waste-derived nanoporous carbons for hydrogen storage. ACS Applied Energy Materials 2022, 5 (9), 10915-10926.
(81) Liu, Q.; Zhai, Z.; Guo, J.; Cheng, J.; Zhang, Y. Liquefaction of starch using solid-acid catalysts derived from spent coffee for the production of plasticized poly (vinyl alcohol) films. Carbohydrate Polymers 2021, 254, 117427.
(82) Pitaro, M.; Croce, N.; Gallo, V.; Arienzo, A.; Salvatore, G.; Antonini, G. Coumarin-induced hepatotoxicity: A narrative review. Molecules 2022, 27 (24), 9063.
(83) Wittkowsky, A. K. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. In Seminars in vascular medicine, 2003; Copyright© 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New …: Vol. 3, pp 221-230.
(84) Smyth, T.; Ramachandran, V.; Smyth, W. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. International journal of antimicrobial agents 2009, 33 (5), 421-426.
(85) Montagner, C.; de Souza, S. M.; Groposo, C.; Delle Monache, F.; Smânia, E. F.; Smânia Jr, A. Antifungal activity of coumarins. Zeitschrift für Naturforschung C 2008, 63 (1-2), 21-28.
(86) Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Current pharmaceutical design 2004, 10 (30), 3813-3833.
(87) Borges Bubols, G.; da Rocha Vianna, D.; Medina-Remon, A.; von Poser, G.; Maria Lamuela-Raventos, R.; Lucia Eifler-Lima, V.; Cristina Garcia, S. The antioxidant activity of coumarins and flavonoids. Mini reviews in medicinal chemistry 2013, 13 (3), 318-334.
(88) Al-Warhi, T.; Sabt, A.; Elkaeed, E. B.; Eldehna, W. M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chemistry 2020, 103, 104163.
(89) Tupare, S. D.; Meshram, P. Chemistry of Coumarin: A Review. 2024.
(90) Aslam, K.; Khosa, M. K.; Jahan, N.; Nosheen, S. Short communication: synthesis and applications of Coumarin. Pak. J. Pharm. Sci 2010, 23 (4), 449-454.
(91) Deutsche Chemische Gesellschaft, B. Berichte der Deutschen Chemischen Gesellschaft; Verlag Chemie., 1888.
(92) Shah, D.; Shah, N. The Kostanecki-Robinson acylation of 5-hydroxy-6-acetyl-4-methylcoumarin. Journal of the American Chemical Society 1955, 77 (6), 1699-1700.
(93) Ali, M. A. E. A. A. Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chinese Journal of Catalysis 2015, 36 (7), 1124-1130.
(94) Sinhamahapatra, A.; Sutradhar, N.; Pahari, S.; Bajaj, H. C.; Panda, A. B. Mesoporous zirconium phosphate: An efficient catalyst for the synthesis of coumarin derivatives through Pechmann condensation reaction. Applied Catalysis A: General 2011, 394 (1-2), 93-100.
(95) Kim, J.-C.; Ryoo, R.; Opanasenko, M. V.; Shamzhy, M. V.; Cejka, J. Mesoporous MFI zeolite nanosponge as a high-performance catalyst in the Pechmann condensation reaction. ACS Catalysis 2015, 5 (4), 2596-2604.
(96) Khder, A. E. R. S.; Ahmed, S. A.; Khairou, K. S.; Altass, H. M. Competent, selective and high yield of 7-hydroxy-4-methyl coumarin over sulfonated mesoporous silica as solid acid catalysts. Journal of Porous Materials 2018, 25, 1-13.
(97) Kour, M.; Paul, S. A green and convenient approach for the one-pot solvent-free synthesis of coumarins and β-amino carbonyl compounds using Lewis acid grafted sulfonated carbon@ titania composite. Monatshefte für Chemie-Chemical Monthly 2017, 148, 327-337.
(98) Ojeda, J. J.; Dittrich, M. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. Microbial Systems Biology: Methods and Protocols 2012, 187-211.
(99) Cao, R.; Liu, X.; Liu, Y.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food chemistry 2021, 342, 128258.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明