博碩士論文 111223027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.116.10.58
姓名 陳玟諭(Wun-Yu Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成用於反式錫鈣鈦礦太陽能電池之兩性介面修飾材料之D-A type共軛高分子
(Synthesis of D-A type conjugated polymers used as amphiphilic interfacial modification materials for inverted perovskite solar cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 錫鈣鈦礦太陽能電池(Tin Perovskite solar cells,簡稱TPSCs)中錫鈣鈦礦吸收層因具理想的能隙(∼1.4 eV)和較低的毒性而有巨大的前景,TPSCs之最高光電轉換效率(Power conversion efficiency, PCE)已達15%以上。但錫鈣鈦礦因Sn2+容易氧化及快速結晶,導致穩定性差及薄膜品質不佳,另外還有載子傳遞層與錫鈣鈦礦層的介面相容性不好等問題。許多學者透過在錫鈣鈦礦前驅液中加入添加劑抑制Sn2+的氧化,而對介面相容性的問題則較少研究。本研究以已發表的PDTON結構為基礎,以具有電洞傳輸能力的isopropyl-triphenylamine (i-pr-TPA)做為Acceptor,並將原先以TPA結構搭配一條親水鏈之Donor改為同樣具電洞傳輸能力的cyclopentadithiophene (CPDT)搭配兩條親水的烷基胺側鏈,合成出兩性高分子PTSN。PTSN的好處有三: 一為CPDT結構中具有電洞萃取能力之噻吩,能有效地將電洞從錫鈣鈦礦層中萃取出來。二為CPDT相較於TPA,結構中可再增加一條親水烷基胺鏈,以更好的修飾電洞傳遞層(HTL) Cu-SnCo2O4 (Cu-SCO)的表面及HOMO能階,來更加匹配錫鈣鈦礦的價帶,且路易斯鹼烷胺基可鈍化錫鈣鈦礦表面的缺陷。三為結構中同時具親、疏水基團,可增加與錫鈣鈦礦前驅液的相容性。兩個高分子(PTSN與PDTON)的熱裂解溫度皆大於200℃。UV-Vis吸收光譜顯示在相同濃度下,PTSN溶液及膜的光吸收度皆較PDTON小,可使更多光子到達錫鈣鈦礦吸光層。在Donor結構中含兩條親水鏈之高分子PTSN膜的錫鈣鈦礦前驅液接觸角較在PDTON膜上小,顯示與親水性之錫鈣鈦礦前驅液的相容性大。Cu-SCO/PTSN膜的價帶(-5.53 eV)比Cu-SCO/PDTON膜的價帶(-5.49 eV)更接近錫鈣鈦礦的價帶(-5.74 eV),電洞在傳遞時的能量損失較少。FTIR光譜顯示PTSN+SnI2及PTSN+Cu-SCO的amine C-N stretching與thiophene C-S stretching皆比純PTSN的波數藍位移,代表胺基上氮的孤對電子與噻吩上硫的孤對電子,都能與Cu-SCO膜及錫鈣鈦礦配位未飽和之Sn2+作用。PL及TRPL數據顯示錫鈣鈦礦沉積在經PTSN修飾的Cu-SCO上的螢光強度比沉積在Cu-SCO/PDTON或Cu-SCO HTLs上弱且載子生命週期也較短,表示Cu-SCO/PTSN HTL能最有效的將錫鈣鈦礦中的電洞萃取出來。將高分子PTSN做為錫鈣鈦礦層與HTL間之介面修飾層所組裝之反式TPSCs的PCE可達9.30% (而以Cu-SCO/PDTON及Cu-SCO為HTL的元件效率分別為8.06%及7.91%)。
摘要(英) The absorbers of Tin Perovskite solar cells (TPSCs) have great prospects due to their ideal energy gap (∼1.4 eV) and low toxicity. The power conversion efficiency (PCE) has achieved a significantly value of 15%. However, the tin perovskite absorber is susceptible to Sn2+ oxidation and rapid crystallization, leading to problems such as poor stability, and poor film quality. Moreover, the cell may have poor interfacial compatibility between carrier transporting layer and tin perovskite layer. Lots of researches focus on adding additives to the tin perovskite precursor solution to inhibit the oxidation of Sn2+, but less studies focus on the issue of interfacial compatibility. In this study, we used a published polymer PDTON as a base, using the same isopropyl-triphenylamine (i-pr-TPA) with hole transport ability as the Acceptor. The hole-transporting moiety cyclopentadithiophene (CPDT) with two hydrophilic alkylamine side chains was used (instead of TPA on PDTON) as a donor to prepared a new bipolar polymer PTSN. There are three advantages of PTSN: First, it uses the hole-extracting thiophene in the CPDT structure to extract effectively the holes from the tin perovskite layer. The second is that compared to TPA, CPDT has two hydrophilic alkylamine chain can better modify the surface and HOMO energy of the hole transport layer (HTL) Cu-SnCo2O4 (Cu-SCO) to match better the valence band of the tin perovskite and the Lewis base amine group can passivate the defects of the tin perovskite film. The third is that PTSN has both hydrophilic and hydrophobic groups, which can increase the affinity between the tin perovskite precursor and PTSN. The thermal decomposition temperatures of both polymers are greater than 200°C. UV-Vis absorption spectra show that at the same concentration, the light absorption of the PTSN solution and film is smaller than those of PDTON, allowing more photons to reach the tin perovskite absorber. Contact angle of the tin perovskite precursor solution on PTSN film is smaller than that on the PDTON film, indicating that the compatibility with tin perovskite precursor solution is better. Moreover, the valence band edge (-5.53) of the Cu-SCO/PTSN film better matched with the valence band (-5.74 eV) of the tin perovskite than that (-5.49) of Cu-SCO/PDTON film therefore the energy loss of hole transporting is less. FTIR spectra show that the C-N stretching of amine and C-S stretching of thiophene of PTSN+SnI2 and PTSN+Cu-SCO both blue-shifted compared to pure PTSN, indicating that the lone pairs of nitrogen on the amine group and sulfur on thiophene could interact with the coordinated unsaturated Sn2+ of Cu-SCO film and tin perovskite surface. PL and TRPL data show that the fluorescence intensity of tin perovskite deposited on PTSN-modified Cu-SCO is weaker than that deposited on Cu-SCO/PDTON and Cu-SCO HTLs, and the carrier lifetime is also shorter, indicating that Cu- SCO/PTSN HTL can most effectively extract the holes from tin perovskite. The PCE of inverted TPSCs using polymer PTSN as the interface modification layer can reach 9.30% (compared to 8.06% for using PDTON as a interface modificate agent and 7.91% for cell coithout interface modification agent).
關鍵字(中) ★ 錫鈣鈦礦太陽能電池
★ 兩性介面修飾
★ 高分子
關鍵字(英)
論文目次 摘要 v
Abstract vii
Graphical Abstract ix
謝誌 x
目錄 xi
圖目錄 xv
表目錄 xxi
第一章、緒論 1
1-1、前言 1
1-2、太陽能電池種類 1
1-3、鈣鈦礦太陽能電池PSC的元件架構及工作機制 4
1-4、反式鈣鈦礦太陽能電池的兩性介面修飾材料 6
1-4-1、反式錫鈣鈦礦層與電洞傳遞層之兩性介面修飾材料所需具備之性質 6
1-4-2、使用兩性高分子PFN衍生物作為鉛鈣鈦礦層與載子傳遞層之介面修飾材料 7
1-4-3、使用P3CT-BN作為一般式鉛鈣鈦礦層與電洞傳遞層之兩性介面修飾材料 13
1-4-4、使用PTFTS作為反式鉛鈣鈦礦層與電洞傳遞層之兩性介面修飾材料 16
1-4-5、使用CPE-K作為反式鉛鈣鈦礦層與電洞傳遞層之兩性介面修飾材料 19
1-4-6、兩性高分子PDTON應用於鈣鈦礦太陽能電池之電洞傳遞層或電極緩衝層 22
1-4-7、使用有機兩性小分子TEA作為鉛鈣鈦礦層與電洞傳遞層之介面修飾材料 24
1-5、研究動機 28
第二章、實驗部分 30
2-1、實驗藥品 30
2-2、產物與中間產物之結構及簡稱 33
2-3、實驗步驟 36
2-3-1、兩性介面修飾材料的合成(polymer 1) 36
2-3-1-1、TBP-CPDT (Donor 1)的合成,如圖2-3-1-1所示 37
2-3-1-2、DiBpin-i-pr-TPA (Acceptor 1)的合成,如圖2-3-1-2所示 39
2-3-1-3、高分子中間體PTSBr的合成,如圖2-3-1-3所示 41
2-3-1-4、高分子PTSN的合成,如圖2-3-1-4所示 42
2-3-2、兩性介面修飾材料的合成(polymer 2) 44
2-3-2-1、Br-TON (Donor 2)的合成,如圖2-3-2-1所示 45
2-3-2-2、高分子PDTON的合成,如圖2-3-2-2所示 48
2-4、儀器分析及樣品製備 49
2-4-1、核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer, NMR) 49
2-4-2、聚焦微波化學反應系統(CEM) 50
2-4-3、紫外光/可見光/近紅外光分光光譜儀(UV/ Vis Sepectrometer) 51
2-4-4、電化學測量(Electrochemical Measurement System) 52
2-4-5、傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer) 54
2-4-6、熱重分析(Thermogravimetric Analysis) 56
2-4-7、接觸角量測儀(Contact angle meter) 57
2-4-8、凝膠滲透層析儀(Gel Permeation Chromatography, GPC) 58
2-4-9、高分子溶解度的測量 61
2-4-10、反式錫鈣鈦礦太陽能電池元件的組裝及測試 61
第三章、結果與討論 62
3-1、高分子中間體PTSBr與高分子PTSN的結構鑑定 62
3-1-1、PTSBr與PTSN的1H NMR 62
3-1-2、PTSN的13C NMR 65
3-1-3、PTSN及PDTON的MALDI-TOF Mass圖譜 67
3-2、高分子PTSBr及PDTON的合成步驟探討 69
3-3、高分子PTSN及PDTON的溶解度比較 73
3-4、PTSN作為介面修飾層塗佈在Cu-SCO上的EDS圖 75
3-5、高分子PTSN及PDTON的熱穩定性質 76
3-6、高分子PTSN及PDTON個別DA單體的差異性比較 77
3-6-1、PTSN之DA單體的UV-Vis吸收光譜圖及Tauc plot圖 77
3-6-2、PTSN之DA單體的電化學循環伏安圖及前置軌域能階 78
3-6-3、PTSN與PDTON之個別DA單元的差異性 80
3-7、高分子PTSN及PDTON溶液及膜在相同濃度下之UV-Vis吸收光譜圖的吸收度比較 84
3-8、高分子PTSN及PDTON鍍在Cu-SCO上膜的UV-Vis吸收光譜圖及Tauc plot圖 86
3-9、高分子PTSN及PDTON鍍在Cu-SCO上膜的UPS能譜圖及前置軌域能階 87
3-10、高分子PTSN及PDTON的水接觸角及錫鈣鈦礦前驅溶液接觸角 90
3-11、介面修飾層塗佈在Cu-SCO上膜的SEM表面形貌圖及AFM圖 91
3-12、錫鈣鈦礦沉積在介面修飾層PTSN及PDTON上的SEM表面形貌圖 93
3-13、錫鈣鈦礦沉積在PTSN或PDTON膜上的PL及TRPL圖 94
3-14、PTSN及PDTON的電洞遷移率及缺陷密度 95
3-15、PTSN及PDTON與Cu-SCO及錫鈣鈦礦之作用 100
3-16、PTSN及PDTON作為錫鈣鈦礦層及電洞傳遞層之介面修飾層所組裝之反式錫鈣鈦礦太陽能電池的光伏表現 106
第四章、 結論 108
參考文獻 110
附錄 114
參考文獻 1. https://www.ucsusa.org/resources/benefits-renewable-energy-use.
2. Lewis, N. S.; Nocera, D. G., Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 2006, 103 (43), 15729-35.
3. https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=796.
4. https://www.nrel.gov/pv/cell-efficiency.html.
5. http://www.fengtayeps.org.tw/paper.asp?page=2013&num=1346&num2=219.
6. https://epti.ftis.org.tw/WPContent/Uploads/2_5-5%E4%B8%8B%E4%B8%96%E4%BB%A3%E7%B6%A0%E8%89%B2%E7%92%B0%E4%BF%9D%E8%83%BD%E6%BA%90%E6%8A%80%E8%A1%93-%E6%9C%89%E6%A9%9F%E8%96%84%E8%86%9C%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0.pdf.
7. https://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=dc1dc110-eaff-4a2a-8f5b-81f0654aed21.
8. https://zh.wikipedia.org/wiki/%E9%88%A3%E9%88%A6%E7%A4%A6.
9. Wali, Q.; Iftikhar, F. J.; Khan, M. E.; Ullah, A.; Iqbal, Y.; Jose, R., Advances in stability of perovskite solar cells. Organic Electronics 2020, 78, 105590.
10. Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G., High-Efficiency Perovskite Solar Cells. Chemical Reviews 2020, 120 (15), 7867-7918.
11. Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.-W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics 2015, 11 (7), 582-587.
12. Chang, Y.-M.; Leu, C.-Y., Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. Journal of Materials Chemistry A 2013, 1 (21), 6446-6451.
13. An, D.; Zou, J.; Wu, H.; Peng, J.; Yang, W.; Cao, Y., White emission polymer light-emitting devices with efficient electron injection from alcohol/water-soluble polymer/Al bilayer cathode. Organic Electronics 2009, 10 (2), 299-304.
14. Xue, S.; Qiu, X.; Yao, L.; Wang, L.; Yao, M.; Gu, C.; Wang, Y.; Xie, Z.; Wu, H., Fully solution-processed and multilayer blue organic light-emitting diodes based on efficient small molecule emissive layer and intergrated interlayer optimization. Organic Electronics 2015, 27, 35-40.
15. Xue, S.; Yao, L.; Shen, F.; Gu, C.; Wu, H.; Ma, Y., Highly Efficient and Fully Solution-Processed White Electroluminescence Based on Fluorescent Small Molecules and a Polar Conjugated Polymer as the Electron-Injection Material. Advanced Functional Materials 2012, 22 (5), 1092-1097.
16. Nam, C.-Y., Ambient Air Processing Causes Light Soaking Effects in Inverted Organic Solar Cells Employing Conjugated Polyelectrolyte Electron Transfer Layer. The Journal of Physical Chemistry C 2014, 118 (47), 27219-27225.
17. Lee, E. J.; Heo, S. W.; Han, Y. W.; Moon, D. K., An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. Journal of Materials Chemistry C 2016, 4 (13), 2463-2469.
18. Jia, X.; Zhang, L.; Luo, Q.; Lu, H.; Li, X.; Xie, Z.; Yang, Y.; Li, Y.-Q.; Liu, X.; Ma, C.-Q., Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. ACS Applied Materials & Interfaces 2016, 8 (28), 18410-18417.
19. Xie, X.; Liu, G.; Xu, C.; Li, S.; Liu, Z.; Lee, E.-C., Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells. Organic Electronics 2017, 44, 120-125.
20. Zhang, Q.; Zhang, M.; Zhang, F.; Liu, X.; Teng, F.; Hou, Y.; Cui, Q.; Hu, Y.; Lou, Z., Understanding the mechanisms of a conjugated polymer electrolyte for interfacial modification in solution-processed organic-inorganic hybrid perovskite photodetectors. Organic Electronics 2020, 83, 105729.
21. Lee, J.; Kang, H.; Kim, G.; Back, H.; Kim, J.; Hong, S.; Park, B.; Lee, E.; Lee, K., Achieving Large-Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer. Advanced Materials 2017, 29 (22), 1606363.
22. Li, B.; Xiang, Y.; Jayawardena, K. D. G. I.; Luo, D.; Wang, Z.; Yang, X.; Watts, J. F.; Hinder, S.; Sajjad, M. T.; Webb, T.; Luo, H.; Marko, I.; Li, H.; Thomson, S. A. J.; Zhu, R.; Shao, G.; Sweeney, S. J.; Silva, S. R. P.; Zhang, W., Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy 2020, 78, 105249.
23. Zhang, W.; Wan, L.; Fu, S.; Li, X.; Fang, J., Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer. Journal of Materials Chemistry A 2020, 8 (14), 6546-6554.
24. Liu, Z.; Li, S.; Wang, X.; Cui, Y.; Qin, Y.; Leng, S.; Xu, Y.-x.; Yao, K.; Huang, H., Interfacial engineering of front-contact with finely tuned polymer interlayers for high-performance large-area flexible perovskite solar cells. Nano Energy 2019, 62, 734-744.
25. Kim, S.; Jeong, J.-E.; Hong, J.; Lee, K.; Lee, M. J.; Woo, H. Y.; Hwang, I., Improved Interfacial Crystallization by Synergic Effects of Precursor Solution Stoichiometry and Conjugated Polyelectrolyte Interlayer for High Open-Circuit Voltage of Perovskite Photovoltaic Diodes. ACS Applied Materials & Interfaces 2020, 12 (10), 12328-12336.
26. Zhang, Q.; Wang, W.-T.; Chi, C.-Y.; Wächter, T.; Chen, J.-W.; Tsai, C.-Y.; Huang, Y.-C.; Zharnikov, M.; Tai, Y.; Liaw, D.-J., Toward a universal polymeric material for electrode buffer layers in organic and perovskite solar cells and organic light-emitting diodes. Energy & Environmental Science 2018, 11 (3), 682-691.
27. Liu, Y.; Xiang, W.; Xu, T.; Zhang, H.; Xu, H.; Zhang, Y.; Qi, W.; Liu, L.; Yang, T.; Wang, Z.; Liu, S., Strengthened Surface Modification for High-Performance Inorganic Perovskite Solar Cells with 21.3% Efficiency. Small 2023, 19 (46), 2304190.
28. Coppo, P.; Cupertino, D. C.; Yeates, S. G.; Turner, M. L., Synthetic Routes to Solution-Processable Polycyclopentadithiophenes. Macromolecules 2003, 36 (8), 2705-2711.
29. Balandier, J.-Y.; Quist, F.; Amato, C.; Bouzakraoui, S.; Cornil, J.; Sergeyev, S.; Geerts, Y., Synthesis of soluble oligothiophenes bearing cyano groups, their optical and electrochemical properties. Tetrahedron 2010, 66 (49), 9560-9572.
30. Keyworth, C. W.; Chan, K. L.; Labram, J. G.; Anthopoulos, T. D.; Watkins, S. E.; McKiernan, M.; White, A. J. P.; Holmes, A. B.; Williams, C. K., The tuning of the energy levels of dibenzosilole copolymers and applications in organic electronics. Journal of Materials Chemistry 2011, 21 (32), 11800-11814.
31. Grosjean, S.; Hassan, Z.; Wöll, C.; Bräse, S., Diverse Multi-Functionalized Oligoarenes and Heteroarenes for Porous Crystalline Materials. European Journal of Organic Chemistry 2019, 2019 (7), 1446-1460.
32. Zhu, X.; Guo, W.; Li, H.; Zhang, G.; Pei, M.; Wang, L.; Feng, J., Synthesis of a novel water-soluble conjugated polyelectrolyte based on polycyclopentadithiophene backbone and its application for heparin detection. Designed Monomers and Polymers 2014, 17 (7), 624-628.
33. Houston, S. D.; Fahrenhorst-Jones, T.; Xing, H.; Chalmers, B. A.; Sykes, M. L.; Stok, J. E.; Farfan Soto, C.; Burns, J. M.; Bernhardt, P. V.; De Voss, J. J.; Boyle, G. M.; Smith, M. T.; Tsanaktsidis, J.; Savage, G. P.; Avery, V. M.; Williams, C. M., The cubane paradigm in bioactive molecule discovery: further scope, limitations and the cyclooctatetraene complement. Organic & Biomolecular Chemistry 2019, 17 (28), 6790-6798.
34. Zhou, Z.; Corbitt, T. S.; Parthasarathy, A.; Tang, Y.; Ista, L. K.; Schanze, K. S.; Whitten, D. G., “End-Only” Functionalized Oligo(phenylene ethynylene)s: Synthesis, Photophysical and Biocidal Activity. The Journal of Physical Chemistry Letters 2010, 1 (21), 3207-3212.
35. Talipov, M. R.; Hossain, M. M.; Boddeda, A.; Thakur, K.; Rathore, R., A search for blues brothers: X-ray crystallographic/spectroscopic characterization of the tetraarylbenzidine cation radical as a product of aging of solid magic blue. Organic & Biomolecular Chemistry 2016, 14 (10), 2961-2968.
36. Fortun, S.; Beauclair, P.; Schmitzer, A. R., Metformin as a versatile ligand for recyclable palladium-catalyzed cross-coupling reactions in neat water. RSC Advances 2017, 7 (34), 21036-21044.
37. Lin, J. J.; Bird, J. P., Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. Journal of Physics: Condensed Matter 2002, 14, R501 - R596.
38. Hendriks, K. H.; Wijpkema, A. S. G.; van Franeker, J. J.; Wienk, M. M.; Janssen, R. A. J., Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells. Journal of the American Chemical Society 2016, 138 (31), 10026-10031.
39. Nelson, T. L.; Young, T. M.; Liu, J.; Mishra, S. P.; Belot, J. A.; Balliet, C. L.; Javier, A. E.; Kowalewski, T.; McCullough, R. D., Transistor Paint: High Mobilities in Small Bandgap Polymer Semiconductor Based on the Strong Acceptor, Diketopyrrolopyrrole and Strong Donor, Dithienopyrrole. Advanced Materials 2010, 22 (41), 4617-4621.
40. Syed, A. M.; Iqbal, A. K.; Waheed, A. Y.; Khasan, S. K., Space Charge–Limited Current Model for Polymers. In Conducting Polymers, Faris, Y., Ed. IntechOpen: Rijeka, 2016; p Ch. 5.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明