博碩士論文 111223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.142.210.216
姓名 莊才俊(Tsai-Chun Chuang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 二維材料 MXene 結合二硫化鉬與硫化錳及雙金屬鋅錳氧化物 ZnMn2O4 之複合材作為鋰(鈉)離子電池負極材料之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本論文分為兩部分,首先在第一部分中,二維/二維異質結構能夠充分發揮每種二維材料的優勢,甚至通過協同效應展現出更好的性能。二維過渡金屬碳化物Ti3C2Tx (MXene) 具有優異的金屬導電性,但易發生重新堆疊;而二維MoS2則具有鬆散的空間,但導電性較差。兩者結合後能夠彌補彼此的不足。此外,將二維MoS2與其他過渡金屬硫化物結合是提高其電化學性能的有前途的策略。在這個研究中,利用一步水熱法合成了一種異質結構,其中MnS納米顆粒嵌入生長在MXene上的MoS2納米片層與層中 (稱為MXene@MnS-MoS2,簡稱為M-MMS),作為鋰離子電池的負極材料。異質結構帶來的相變和內建電場提高了鋰(鈉)離子的插層動力學,促進了電荷傳遞,並且能夠應對體積膨脹。在鋰離子半電池中,M-MMS電極展現出良好的比容量、出色的倍率性能和穩定的循環穩定性。在鈉離子半電池及鋰離子全電池測試中也表現出不錯的比容量。
第二部分以第一部分的水熱合成為基礎,嘗試將MXene與ZnMn2O4結合在一起,並期許也發揮協同效應,使其能作為鋰離子電池負極進行應用。
摘要(英) In the first part, two-dimensional/two-dimensional heterostructures can leverage the strengths of each constituent 2D material and even demonstrate enhanced performance through synergistic effects. Two-dimensional transition metal carbide Ti3C2Tx (MXene) boasts excellent metallic conductivity, but, is prone to restacking, whereas two-dimensional MoS2 offers loose space but lacks in conductivity. Therefore, combining the Ti3C2Tx and MoS2 can complement each other′s weaknesses. Additionally, merging of 2D MoS2 with other transition metal sulfides represents a promising strategy for enhancing its electrochemical performances. Herein, a heterostructure composed of MnS nanoparticles embedded in MoS2 nanosheets grown on MXene (referred to as MXene@MnS-MoS2, abbreviated as M-MMS) was designed and synthesized as an anode material for lithium-ion batteries using a one-step hydrothermal method. The heterostructure-induced phase transition and built-in electric field enhance the intercalation kinetics of Li-ions, facilitate charge transfer, and accommodate volume expansion. Among the M-MMSs, the 0.26M-MMS exhibited the best performance, with a capacity of 818 mAh g-1 after 200 cycles at a current density of 100 mA g-1. The results indicate that M-MMS is a promising high-performance anode material for lithium-ion batteries demonstrating remarkable cycling performance, outstanding rate performance and good stability. The second part attempts to combine MXene with ZnMn2O4, aiming to enhance its performance as a lithium-ion battery anode.
關鍵字(中) ★ 過度金屬碳氮化物
★ 過渡金屬二硫屬化物
★ 鋰離子電池
★ 鈉離子電池
關鍵字(英) ★ MXene
★ TMD
★ LIB
★ SIB
論文目次 摘 要 II
Abstract III
謝誌 IV
目錄 VI
圖目錄 XII
表目錄 XIX
第一章 序論 1
1-1 鋰離子電池 (LIBs) 1
1-1-1 鋰離子電池簡介 1
1-1-2 鋰離子電池正極材料 3
1-1-3 鋰離子電池負極材料 7
1-2 鈉離子電池 (SIBs) 10
1-2-1 鈉離子電池簡介 10
1-2-2 鈉離子電池正極材料 12
1-2-3 鈉離子電池負極材料 14
1-3 電解液 16
1-3-1 電解液簡介 16
1-3-2 有機溶劑 17
1-3-3 金屬鹽 18
1-3-4 添加劑 19
1-3-5 固態電解質界面 21
1-4 過渡金屬二硫屬化物 (TMDs) 22
1-4-1 過渡金屬二硫屬化物簡介 22
1-4-2 過渡金屬二硫屬化物製備方式 24
1-4-3 在鋰/鈉離子電池負極的應用 26
1-5 過渡金屬碳/氮化物 (MXenes) 29
1-5-1 過渡金屬碳/氮化物簡介 29
1-5-2 MAX phase製備方式 31
1-5-3 合成MXene的蝕刻方式 37
1-5-4 插層劑 41
1-5-5 在鋰/鈉離子電池負極的應用 42
1-6 研究動機與目的 45
第二章 實驗方法與鑑定 46
2-1 實驗藥品 46
2-2 實驗步驟 48
第壹部分 二維材料MXene結合二硫化鉬與硫化錳之複合材作為鋰(鈉)離子電池負極材料之應用 48
2-2-1 合成多層Ti3C2Tx (m-MXene) 48
2-2-2 合成少層Ti3C2Tx (f-MXene) 49
2-2-3 合成MnMoO4奈米棒 (MMO) 50
2-2-4 合成MXene@MnS-MoS2 (M-MMS) 51
第貳部分 二維材料MXene結合鋅錳氧化物ZnMn2O4之複合材作為鋰離子電池負極材料之應用 52
2-2-5 合成MXene@ZnMn2O4 (M-ZMO) 52
2-3 電極製備及電化學測試方法 53
2-3-1 負極極片製作 53
2-3-2 正極極片製作 53
2-3-3 硬幣型2032型電池組裝 54
2-3-4 定(變)電流充放電循環穩定性測試 55
2-3-5 循環伏安法 (CV) 56
2-3-6 電化學阻抗分析 (EIS) 56
2-4 實驗合成及鑑定儀器 57
2-4-1 實驗合成設備 57
2-4-2 實驗鑑定儀器 58
2-5 儀器鑑定之原理 59
2-5-1 粉末X光繞射儀 (PXRD) 59
2-5-2 掃描式電子顯微鏡 (SEM) 60
2-5-3 穿透式電子顯微鏡 (TEM) 61
2-5-4 拉曼光譜分析儀 (Raman Spectroscopy) 62
2-5-5 熱重分析儀 (TGA) 63
2-5-6 高解析感應耦合電將質譜分析 (ICP-MS) 64
2-5-7 元素分析儀 (EA) 65
2-5-8 光電子能譜 (XPS) 66
2-5-9 電化學阻抗譜 (EIS) 67
2-5-10 循環伏安法 (CV) 68
第三章 結果與討論 70
第壹部分 二維材料MXene結合二硫化鉬與硫化錳之複合材作為鋰(鈉)離子電池負極材料之應用 70
3-1 材料鑑定 70
3-1-1 大角度X光繞射分析 (WXRD) 70
3-1-2 掃描式電子顯微鏡 (SEM) 形貌鑑定 73
3-1-3 穿透式電子顯微鏡 (TEM) 結果分析 80
3-1-4 拉曼光譜分析 (Raman) 87
3-1-5 熱重分析 (TGA) 90
3-1-6 感應電漿耦合質譜 (ICP-MS) 分析及元素分析 (EA) 91
3-1-7 X光電子能譜 (XPS) 分析 92
3-2 材料於鋰離子半電池之電化學測試 97
3-2-1 循環伏安曲線及充放電曲線之分析 97
3-2-2 循環穩定性及倍率性測試 102
3-2-3 交流阻抗分析 108
3-2-4 電容貢獻度計算 111
3-3 充放電循環後之鑑定 116
3-4 材料於鈉離子半電池之電化學測試 119
3-4-1 循環伏安曲線及充放電曲線之分析 119
3-4-2 循環穩定性及倍率性測試 121
3-4-3 交流阻抗分析 124
3-4-4 電容貢獻度計算 126
3-5 實際應用及相關文獻比較 130
第四章 結果與討論 133
第貳部分 二維材料MXene結合鋅錳氧化物ZnMn2O4之複合材作為鋰離子電池負極材料之應用 133
4-1 材料鑑定 133
4-1-1 大角度X光繞射分析 (WXRD) 133
4-1-2 掃描式電子顯微鏡 (SEM) 形貌鑑定 134
4-1-3 穿透式電子顯微鏡 (TEM) 結果分析 137
4-2 材料於鋰離子半電池之電化學測試 139
4-2-1 循環伏安曲線及充放電曲線之分析 139
4-2-2 循環穩定性及倍率性測試 141
第五章 結論 144
參考文獻 146
參考文獻 (1) Shao, Y.; El-Kady, M. F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chemical reviews 2018, 118 (18), 9233-9280.
(2) Arshad, F.; Li, L.; Amin, K.; Fan, E.; Manurkar, N.; Ahmad, A.; Yang, J.; Wu, F.; Chen, R. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries. ACS Sustainable Chemistry & Engineering 2020, 8 (36), 13527-13554.
(3) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. nature 2001, 414 (6861), 359-367.
(4) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
(5) Dahn, J.; Fuller, E.; Obrovac, M.; Von Sacken, U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 1994, 69 (3-4), 265-270.
(6) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Advanced materials 2010, 22 (8), E28-E62.
(7) Thackeray, M. M. Manganese oxides for lithium batteries. Progress in Solid State Chemistry 1997, 25 (1-2), 1-71.
(8) Thackeray, M.; De Picciotto, L.; De Kock, A.; Johnson, P.; Nicholas, V.; Adendorff, K. Spinel electrodes for lithium batteries—a review. Journal of power sources 1987, 21 (1), 1-8.
(9) Sun, Y.-K.; Yoon, C.; Oh, I.-H. Surface structural change of ZnO-coated LiNi0. 5Mn1. 5O4 spinel as 5 V cathode materials at elevated temperatures. Electrochimica Acta 2003, 48 (5), 503-506.
(10) Lee, M.-J.; Lee, S.; Oh, P.; Kim, Y.; Cho, J. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano letters 2014, 14 (2), 993-999.
(11) Kakuda, T.; Uematsu, K.; Toda, K.; Sato, M. Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction. Journal of Power Sources 2007, 167 (2), 499-503.
(12) Deng, B.; Nakamura, H.; Zhang, Q.; Yoshio, M.; Xia, Y. Greatly improved elevated-temperature cycling behavior of Li1+ xMgyMn2− x− yO4+ δ spinels with controlled oxygen stoichiometry. Electrochimica Acta 2004, 49 (11), 1823-1830.
(13) Orendorff, C. J.; Doughty, D. H. Lithium ion battery safety. The Electrochemical Society Interface 2012, 21 (2), 35.
(14) Armand, M.; Gauthier, M.; Magnan, J.-F.; Ravet, N. Method for synthesis of carbon-coated redox materials with controlled size. Google Patents: 2009.
(15) Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature materials 2002, 1 (2), 123-128.
(16) Recham, N.; Chotard, J.-N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J.-M. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nature materials 2010, 9 (1), 68-74.
(17) Masquelier, C.; Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chemical Reviews 2013, 113 (8), 6552-6591.
(18) Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
(19) Cho, J.; Kim, Y. W.; Kim, B.; Lee, J. G.; Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angewandte Chemie International Edition 2003, 42 (14), 1618-1621.
(20) Ohzuku, T.; Ueda, A.; Nagayama, M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. Journal of the Electrochemical Society 1993, 140 (7), 1862.
(21) Bruce, P.; áRobert Armstrong, A.; Gitzendanner, R. New intercalation compounds for lithium batteries: layered LiMnO 2. Journal of Materials Chemistry 1999, 9 (1), 193-198.
(22) Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T.-C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nature communications 2014, 5 (1), 3529.
(23) Martha, S. K.; Haik, O.; Zinigrad, E.; Exnar, I.; Drezen, T.; Miners, J. H.; Aurbach, D. On the thermal stability of olivine cathode materials for lithium-ion batteries. Journal of the Electrochemical Society 2011, 158 (10), A1115.
(24) Wang, R.; He, X.; He, L.; Wang, F.; Xiao, R.; Gu, L.; Li, H.; Chen, L. Atomic structure of Li2MnO3 after partial delithiation and re‐lithiation. Advanced Energy Materials 2013, 3 (10), 1358-1367.
(25) Choi, S.; Manthiram, A. Synthesis and electrochemical properties of LiCo2 O 4 Spinel Cathodes. Journal of The Electrochemical Society 2002, 149 (2), A162.
(26) Yamada, A.; Chung, S.-C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. Journal of the electrochemical society 2001, 148 (3), A224.
(27) Choi, D.; Wang, D.; Bae, I.-T.; Xiao, J.; Nie, Z.; Wang, W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J.-G.; Graff, G. L. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano letters 2010, 10 (8), 2799-2805.
(28) Lloris, J.; Vicente, C. P.; Tirado, J. Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochemical and solid-state letters 2002, 5 (10), A234.
(29) Sobkowiak, A.; Roberts, M. R.; Younesi, R.; Ericsson, T.; Häggström, L.; Tai, C.-W.; Andersson, A. M.; Edström, K.; Gustafsson, T. r.; Björefors, F. Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chemistry of Materials 2013, 25 (15), 3020-3029.
(30) Barker, J.; Gover, R.; Burns, P.; Bryan, A.; Saidi, M.; Swoyer, J. Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. Journal of Power Sources 2005, 146 (1-2), 516-520.
(31) Pu, K.-C.; Zhang, X.; Qu, X.-L.; Hu, J.-J.; Li, H.-W.; Gao, M.-X.; Pan, H.-G.; Liu, Y.-F. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Metals 2020, 39, 616-635.
(32) Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews 2018, 1, 35-53.
(33) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Graphite oxide. Chem. Soc. Rev 2010, 39 (1), 228-240.
(34) Yi, T.-F.; Yang, S.-Y.; Xie, Y. Recent advances of Li 4 Ti 5 O 12 as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (11), 5750-5777.
(35) Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39 (8), 3115-3141.
(36) Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chemical reviews 2014, 114 (23), 11444-11502.
(37) Simon, G. K.; Goswami, T. Improving anodes for lithium ion batteries. Metallurgical and Materials Transactions A 2011, 42, 231-238.
(38) Beaulieu, L.; Eberman, K.; Turner, R.; Krause, L.; Dahn, J. Colossal reversible volume changes in lithium alloys. Electrochemical and Solid-State Letters 2001, 4 (9), A137.
(39) Bang, B. M.; Kim, H.; Lee, J.-P.; Cho, J.; Park, S. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy & Environmental Science 2011, 4 (9), 3395-3399.
(40) Li, X.; Gu, M.; Hu, S.; Kennard, R.; Yan, P.; Chen, X.; Wang, C.; Sailor, M. J.; Zhang, J.-G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature communications 2014, 5 (1), 4105.
(41) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature nanotechnology 2012, 7 (5), 310-315.
(42) Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature chemistry 2013, 5 (12), 1042-1048.
(43) Luo, L.; Zhao, P.; Yang, H.; Liu, B.; Zhang, J.-G.; Cui, Y.; Yu, G.; Zhang, S.; Wang, C.-M. Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano letters 2015, 15 (10), 7016-7022.
(44) Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Conversion reaction‐based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12 (16), 2146-2172.
(45) Yu, D. Y.; Hoster, H. E.; Batabyal, S. K. Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Scientific reports 2014, 4 (1), 4562.
(46) Reddy, M. V.; Subba Rao, G.; Chowdari, B. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews 2013, 113 (7), 5364-5457.
(47) Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Beyond intercalation‐based Li‐ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Advanced materials 2010, 22 (35), E170-E192.
(48) Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4− graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society 2010, 132 (40), 13978-13980.
(49) Vikström, H.; Davidsson, S.; Höök, M. Lithium availability and future production outlooks. Applied energy 2013, 110, 252-266.
(50) Kumar, K.; Kundu, R. Empowering Energy Storage Technology: Recent Breakthroughs and Advancement in Sodium-Ion Batteries. ACS Applied Energy Materials 2024.
(51) Carmichael, R. S. Practical handbook of physical properties of rocks and minerals (1988); CRC press, 2017.
(52) 林彖龠; 鍾秉恩; 陳喜芸; 陳雨澤. 水系鋅電池的現況與未來挑戰. 真空科技 2022, 35 (2), 8-21.
(53) Tang, J.; Dysart, A. D.; Pol, V. G. Advancement in sodium-ion rechargeable batteries. Current opinion in chemical engineering 2015, 9, 34-41.
(54) Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+ c 1980, 99 (1-4), 81-85.
(55) Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Na x [Fe1/2Mn1/2] O2 made from earth-abundant elements for rechargeable Na batteries. Nature materials 2012, 11 (6), 512-517.
(56) Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L. Carbon coated Na3V2 (PO4) 3 as novel electrode material for sodium ion batteries. Electrochemistry Communications 2012, 14 (1), 86-89.
(57) Goodenough, J. B.; Hong, H.-P.; Kafalas, J. Fast Na+-ion transport in skeleton structures. Materials Research Bulletin 1976, 11 (2), 203-220.
(58) Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: small volume expansion by sodiation and the surface‐stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1 (3), 580-589.
(59) Deng, W.; Cao, Y.; Yuan, G.; Liu, G.; Zhang, X.; Xia, Y. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode. ACS Applied Materials & Interfaces 2021, 13 (40), 47728-47739.
(60) Thompson, M.; Xia, Q.; Hu, Z.; Zhao, X. S. A review on biomass-derived hard carbon materials for sodium-ion batteries. Materials Advances 2021, 2 (18), 5881-5905.
(61) Senguttuvan, P.; Rousse, G.; Arroyo Y De Dompablo, M.; Vezin, H.; Tarascon, J.-M.; Palacín, M. Low-potential sodium insertion in a NASICON-type structure through the Ti (III)/Ti (II) redox couple. Journal of the American Chemical Society 2013, 135 (10), 3897-3903.
(62) 庄全超; 武山; 刘文元; 陆兆达. 锂离子电池有机电解液研究. 电化学 2001, 7 (4), 403.
(63) 武山; 庄全超. 锂离子电池有机电解液材料研究进展. 化学研究与应用 2005, 17 (4), 433-438.
(64) 马国强; 蒋志敏; 陈慧闯; 王莉; 董经博; 张建君; 徐卫国; 何向明. 基于锂盐的新型锂电池电解质研究进展. 无机材料学报 2018, 33 (7), 699-710.
(65) Gama, M. European Li-Ion Battery Advanced Manufacturing for Electric Vehicles-ELIBAMA. Electrodes and Cells Manufacturing White Paper, European Commission 2014.
(66) Campion, C. L.; Li, W.; Lucht, B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. Journal of The Electrochemical Society 2005, 152 (12), A2327.
(67) 陈高明; 胡立新; 王超. 锂离子电池电解液添加剂的研究进展. 能源研究与管理 2011, (2), 57-61.
(68) 许梦清; 左晓希; 李伟善; 刘建生; 袁中直. 锂离子电池电解液功能添加剂的研究进展. 电池 2006, 36 (2), 148-149.
(69) 庄全超; 武山; 刘文元; 陆兆达. 锂离子蓄电池有机电解液添加剂. 电源技术 2002, 26 (5), 393-396.
(70) Peled, E.; Menkin, S. SEI: past, present and future. Journal of The Electrochemical Society 2017, 164 (7), A1703.
(71) Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Computational materials 2018, 4 (1), 15.
(72) Lu, P.; Li, C.; Schneider, E. W.; Harris, S. J. Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries. The Journal of Physical Chemistry C 2014, 118 (2), 896-903.
(73) Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Advanced energy materials 2017, 7 (3), 1601329.
(74) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry 2013, 5 (4), 263-275.
(75) Zhang, H.; Meng, Y.; Hu, Q.; Zhao, G.; Zhu, F.; Zhang, Y. MoS 2 self-embedded in pleated carbon pyrolyzed by ionic liquids as a high-performance anode materials for lithium-/sodium-ion batteries. Journal of Materials Science: Materials in Electronics 2020, 31, 18209-18220.
(76) Kuc, A.; Heine, T. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chemical Society Reviews 2015, 44 (9), 2603-2614.
(77) Peng, H.; Wang, R.; Mei, L.; Zhang, Q.; Ying, T.; Qian, Z.; Farimani, A. B.; Voiry, D.; Zeng, Z. Transition metal dichalcogenide-based functional membrane: Synthesis, modification, and water purification applications. Matter 2023, 6 (1), 59-96.
(78) Gao, Z.; Ji, Q.; Shen, P.-C.; Han, Y.; Leong, W. S.; Mao, N.; Zhou, L.; Su, C.; Niu, J.; Ji, X. In situ-generated volatile precursor for CVD growth of a semimetallic 2D dichalcogenide. ACS applied materials & interfaces 2018, 10 (40), 34401-34408.
(79) Cao, S.; Liu, T.; Hussain, S.; Zeng, W.; Peng, X.; Pan, F. Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Materials Letters 2014, 129, 205-208.
(80) Sarwar, S.; Nautiyal, A.; Cook, J.; Yuan, Y.; Li, J.; Uprety, S.; Shahbazian-Yassar, R.; Wang, R.; Park, M.; Bozack, M. J. Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction. Sci. China Mater 2020, 63 (1), 62-74.
(81) Wang, T.; Sun, C.; Yang, M.; Zhang, L.; Shao, Y.; Wu, Y.; Hao, X. Enhanced reversible lithium ion storage in stable 1T@ 2H WS2 nanosheet arrays anchored on carbon fiber. Electrochimica Acta 2018, 259, 1-8.
(82) Zheng, Y.; Zheng, X.; Liu, B.; Fu, C.; Zhou, L.; Liu, Y.; Wu, W.; Xiong, C.; Liu, Z.; Yang, Q. Few-layer MoS2 nanosheets anchored by CNT network for superior lithium storage. Electrochimica Acta 2020, 331, 135392.
(83) Pan, Y.; Cheng, X.; Gong, L.; Shi, L.; Zhang, H. Nanoflower-like N-doped C/CoS 2 as high-performance anode materials for Na-ion batteries. Nanoscale 2018, 10 (44), 20813-20820.
(84) Pogorielov, M.; Smyrnova, K.; Kyrylenko, S.; Gogotsi, O.; Zahorodna, V.; Pogrebnjak, A. MXenes—a new class of two-dimensional materials: structure, properties and potential applications. Nanomaterials 2021, 11 (12), 3412.
(85) Hong, W.; Wyatt, B. C.; Nemani, S. K.; Anasori, B. Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. Mrs Bulletin 2020, 45 (10), 850-861.
(86) Huang, W.-X.; Li, Z.-P.; Li, D.-D.; Hu, Z.-H.; Wu, C.; Lv, K.-L.; Li, Q. Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals 2022, 41 (10), 3268-3300.
(87) Kumar, J. A.; Prakash, P.; Krithiga, T.; Amarnath, D. J.; Premkumar, J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M. Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review. Chemosphere 2022, 286, 131607.
(88) Gonzalez‐Julian, J. Processing of MAX phases: From synthesis to applications. Journal of the American Ceramic Society 2021, 104 (2), 659-690.
(89) Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self‐assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Advanced Materials 2018, 30 (23), 1707334.
(90) Eklund, P.; Rosen, J.; Persson, P. O. Å. Layered ternary M n+ 1AX n phases and their 2D derivative MXene: an overview from a thin-film perspective. Journal of Physics D: Applied Physics 2017, 50 (11), 113001.
(91) Schramm, I.; Pauly, C.; Jõesaar, M. J.; Eklund, P.; Schmauch, J.; Mücklich, F.; Odén, M. Solid state formation of Ti4AlN3 in cathodic arc deposited (Ti1− xAlx) Ny alloys. Acta Materialia 2017, 129, 268-277.
(92) Hu, J.; Bultman, J.; Patton, S.; Zabinski, J. Pulsed laser deposition and properties of M n+ 1 AX n phase formulated Ti 3 SiC 2 thin films. Tribology Letters 2004, 16, 113-122.
(93) Duan, J.; Li, M.; Wang, W.; Huang, Z.; Jiang, H.; Ma, Y. Preparation and Performance of Multilayer Si-BCN/Diamond-like Carbon Gradient Films. Materials 2023, 16 (4), 1665.
(94) Bahri, A.; Elleuch, K. Study of the wear behavior for Ti-N, TiAl-N for Combating Tribo-corrosion Problems in Olive Oil Extraction.
(95) Ogugua, S. N.; Ntwaeaborwa, O. M.; Swart, H. C. Latest development on pulsed laser deposited thin films for advanced luminescence applications. Coatings 2020, 10 (11), 1078.
(96) Gonzalez-Julian, J.; Onrubia, S.; Bram, M.; Guillon, O. Effect of sintering method on the microstructure of pure Cr2AlC MAX phase ceramics. Journal of the Ceramic Society of Japan 2016, 124 (4), 415-420.
(97) Lim, K. R. G.; Shekhirev, M.; Wyatt, B. C.; Anasori, B.; Gogotsi, Y.; Seh, Z. W. Fundamentals of MXene synthesis. Nature Synthesis 2022, 1 (8), 601-614.
(98) Riley, D.; Kisi, E.; Wu, E.; McCallum, A. Self-propagating high-temperature synthesis of Ti 3 SiC 2 from 3Ti+ SiC+ C reactants. Journal of materials science letters 2003, 22 (15).
(99) Shaikh, N.; Patel, K.; Pandian, S.; Shah, M.; Sircar, A. Self-propagating high-temperature synthesized ceramic materials for oil and gas wells: application and the challenges. Arabian Journal of Geosciences 2019, 12, 1-11.
(100) Tian, W.; Wang, P.; Zhang, G.; Kan, Y.; Li, Y.; Yan, D. Synthesis and thermal and electrical properties of bulk Cr2AlC. Scripta Materialia 2006, 54 (5), 841-846.
(101) Sariyev, B.; Abdikadyr, A.; Baitikenov, T.; Anuarbekov, Y.; Golman, B.; Spitas, C. Thermal properties and mechanical behavior of hot pressed PEEK/graphite thin film laminate composites. Scientific Reports 2023, 13 (1), 12785.
(102) Ho-Duc, L. H.; El-Raghy, T.; Barsoum, M. W. Synthesis and characterization of 0.3 Vf TiC–Ti3SiC2 and 0.3 Vf SiC–Ti3SiC2 composites. Journal of alloys and compounds 2003, 350 (1-2), 303-312.
(103) Guillon, O.; Gonzalez‐Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Advanced Engineering Materials 2014, 16 (7), 830-849.
(104) Failla, S.; Fu, S.; Sciti, D.; Grasso, S. Flash spark plasma sintering of pure TiB2. Open Ceramics 2021, 5, 100075.
(105) Wang, Q.; Hu, C.; Cai, S.; Sakka, Y.; Grasso, S.; Huang, Q. Synthesis of high‐purity Ti3SiC2 by microwave sintering. International Journal of Applied Ceramic Technology 2014, 11 (5), 911-918.
(106) George, G.; Ede, S. R.; Luo, Z. Fundamentals of perovskite oxides: synthesis, structure, properties and applications; CRC Press, 2020.
(107) Low, I.-M. Ceramic-matrix composites: microstructure, properties and applications; Woodhead Publishing, 2006.
(108) Bhatti, A.; Farries, P. Preparation of long-fiber-reinforced dense glass and ceramic matrix composites. 2000.
(109) Tian, W.-B.; Wang, P.-L.; Kan, Y.-M.; Zhang, G.-J. Cr2AlC powders prepared by molten salt method. Journal of alloys and compounds 2008, 461 (1-2), L5-L10.
(110) Dash, A.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Molten salt shielded synthesis of oxidation prone materials in air. Nature materials 2019, 18 (5), 465-470.
(111) Han, F.; Luo, S.; Xie, L.; Zhu, J.; Wei, W.; Chen, X.; Liu, F.; Chen, W.; Zhao, J.; Dong, L. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS applied materials & interfaces 2019, 11 (8), 8443-8452.
(112) Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials 2016, 2 (12), 1600255.
(113) Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B. Fluorine‐free synthesis of high‐purity Ti3C2Tx (T= OH, O) via alkali treatment. Angewandte Chemie International Edition 2018, 57 (21), 6115-6119.
(114) Jawaid, A.; Hassan, A.; Neher, G.; Nepal, D.; Pachter, R.; Kennedy, W. J.; Ramakrishnan, S.; Vaia, R. A. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS nano 2021, 15 (2), 2771-2777.
(115) Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li, N.; Zhang, H.; Yu, J. Additive-mediated intercalation and surface modification of MXenes. Chemical Society Reviews 2022, 51 (8), 2972-2990.
(116) Chen, H.; Xiao, X.; Zhu, Q.; Zhang, P.; Wang, X.; Xu, B. Flexible Mn3O4/MXene Films with 2D–2D Architectures as Stable and Ultrafast Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (41), 46502-46512.
(117) Hui, X.; Zhao, R.; Zhang, P.; Li, C.; Wang, C.; Yin, L. Low‐temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high‐performance Li‐ion batteries. Advanced Energy Materials 2019, 9 (33), 1901065.
(118) Liu, X.; Liu, F.; Zhao, X.; Fan, L.-Z. Constructing MOF-derived CoP-NC@ MXene sandwich-like composite by in-situ intercalation for enhanced lithium and sodium storage. Journal of Materiomics 2022, 8 (1), 30-37.
(119) Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters 2015, 160, 537-540.
(120) Iqbal, A.; Hamdan, N. M. Investigation and optimization of mxene functionalized mesoporous titania films as efficient photoelectrodes. Materials 2021, 14 (21), 6292.
(121) Yang, W.; Mou, L.; Xiao, B.; Chen, J.; Wang, D.; Peng, S.; Huang, J. Mn2+-Doped MoS2/MXene Heterostructure Composites as Cathodes for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces 2023, 15 (44), 51231-51240.
(122) Lei, Z.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Advanced Energy Materials 2018, 8 (19), 1703482.
(123) Lai, S.; Jeon, J.; Jang, S. K.; Xu, J.; Choi, Y. J.; Park, J.-H.; Hwang, E.; Lee, S. Surface group modification and carrier transport properties of layered transition metal carbides (Ti 2 CT x, T:–OH,–F and–O). Nanoscale 2015, 7 (46), 19390-19396.
(124) Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS applied materials & interfaces 2016, 8 (32), 21011-21019.
(125) Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B 2000, 61 (20), 14095.
(126) Cao, Y.; Deng, Q.; Liu, Z.; Shen, D.; Wang, T.; Huang, Q.; Du, S.; Jiang, N.; Lin, C.-T.; Yu, J. Enhanced thermal properties of poly (vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC advances 2017, 7 (33), 20494-20501.
(127) Fan, H.; Wu, R.; Liu, H.; Yang, X.; Sun, Y.; Chen, C. Synthesis of metal-phase-assisted 1T@ 2H-MoS 2 nanosheet-coated black TiO 2 spheres with visible light photocatalytic activities. Journal of materials science 2018, 53, 10302-10312.
(128) Murugesan, R. A.; Raja, K. C. N. A comparative study on the electrochemical capacitor performance of 1T/2H hybridized phase and 2H pure phase of MoS2 nanoflowers. Nanotechnology 2021, 33 (3), 035402.
(129) Cheng, R.; Hu, T.; Zhang, H.; Wang, C.; Hu, M.; Yang, J.; Cui, C.; Guang, T.; Li, C.; Shi, C. Understanding the lithium storage mechanism of Ti3C2T x MXene. The Journal of Physical Chemistry C 2018, 123 (2), 1099-1109.
(130) Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
(131) Chen, F.; Shi, D.; Yang, M.; Jiang, H.; Shao, Y.; Wang, S.; Zhang, B.; Shen, J.; Wu, Y.; Hao, X. Novel designed MnS‐MoS2 heterostructure for fast and stable Li/Na storage: insights into the advanced mechanism attributed to phase engineering. Advanced Functional Materials 2021, 31 (6), 2007132.
(132) Augustyn, V. Tuning the interlayer of transition metal oxides for electrochemical energy storage. Journal of Materials Research 2017, 32 (1), 2-15.
(133) Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S.-E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. The Journal of Physical Chemistry B 1997, 101 (39), 7717-7722.
(134) Liu, H.; Wang, J.-G.; Hua, W.; You, Z.; Hou, Z.; Yang, J.; Wei, C.; Kang, F. Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Materials 2021, 35, 731-738.
(135) Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 2014, 7 (5), 1597-1614.
(136) Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature materials 2013, 12 (6), 518-522.
(137) Liu, M.-C.; Zhang, B.-M.; Zhang, Y.-S.; Hu, Y.-X. Diacid molecules welding achieved self-adaption layered structure Ti3C2 MXene toward fast and stable lithium-ion storage. ACS Sustainable Chemistry & Engineering 2021, 9 (38), 12930-12939.
(138) Bärmann, P.; Haneke, L.; Wrogemann, J. M.; Winter, M.; Guillon, O.; Placke, T.; Gonzalez-Julian, J. Scalable synthesis of MAX phase precursors toward titanium-based MXenes for lithium-ion batteries. ACS applied materials & interfaces 2021, 13 (22), 26074-26083.
(139) Barmann, P.; Nolle, R.; Siozios, V.; Ruttert, M.; Guillon, O.; Winter, M.; Gonzalez-Julian, J.; Placke, T. Solvent co-intercalation into few-layered Ti3C2T x MXenes in lithium ion batteries induced by acidic or basic post-treatment. ACS nano 2021, 15 (2), 3295-3308.
(140) Wang, W.; Feng, M.; Zhao, X.; Hu, E.; Zhang, Y.; Yang, L.; He, Y.; Wang, X.; Liu, Z. Bidirectional Construction of 3D Flexible Ti3C2T x MXene Films for High-Performance Lithium-Ion Capacitors. ACS Sustainable Chemistry & Engineering 2023, 11 (20), 7908-7916.
(141) Zeng, Q.; Tian, S.; Liu, G.; Yang, H.; Sun, X.; Wang, D.; Huang, J.; Yan, D.; Peng, S. Sulfur-bridged bonds boost the conversion reaction of the flexible self-supporting MnS@ MXene@ CNF anode for high-rate and long-life lithium-ion batteries. ACS Applied Materials & Interfaces 2022, 14 (5), 6958-6966.
(142) Zhang, G.; Feng, H.; Ma, C.; Chen, J.; Wang, Z.; Zheng, W. MoS2 nanotubes via ionic-liquid-assisted assembly of MoS2 nanosheets for lithium storage. ACS Applied Nano Materials 2021, 4 (4), 3397-3405.
(143) Du, Z.; Guo, Y.; Wang, H.; Gu, J.; Zhang, Y.; Cheng, Z.; Li, B.; Li, S.; Yang, S. High-throughput production of 1T MoS2 monolayers based on controllable conversion of Mo-based MXenes. ACS nano 2021, 15 (12), 19275-19283.
(144) Luan, S.; Han, M.; Xi, Y.; Wei, K.; Wang, Y.; Zhou, J.; Hou, L.; Gao, F. MoS 2-decorated 2D Ti 3 C 2 (MXene): a high-performance anode material for lithium-ion batteries. Ionics 2020, 26, 51-59.
(145) Du, G.; Tao, M.; Gao, W.; Zhang, Y.; Zhan, R.; Bao, S.; Xu, M. Preparation of MoS 2/Ti 3 C 2 T x composite as anode material with enhanced sodium/lithium storage performance. Inorganic Chemistry Frontiers 2019, 6 (1), 117-125.
(146) Chen, C.; Xie, X.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.; Urbankowski, P.; Miao, L.; Jiang, J.; Gogotsi, Y. MoS2‐on‐MXene heterostructures as highly reversible anode materials for lithium‐ion batteries. Angewandte Chemie International Edition 2018, 57 (7), 1846-1850.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明