博碩士論文 111223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.118.208.127
姓名 顏姵宜(Pei-I Yen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具胺基中孔洞矽材SBA-1為擔體合成Pt奈米球作為硼烷氨水解氫氣之催化劑及具磺酸性官能基之中孔洞矽材摻雜Ag奈米粒子之催化研究
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本篇論文研究分為兩部分。第一部分研究中,使用具胺基官能基中孔洞矽材作為模板,製備具有球型鉑奈米金屬,並將其用作催化劑用於氨硼烷(NH3BH3)水解產生氫氣。具胺基官能基中孔洞矽材(SBA-1)命名為NS-1B-10,經由正矽酸四乙酯(TEOS)和3-氨丙基三乙氧基矽烷(APTES)在十六烷基吡啶氯化物(CPC)和聚丙烯酸(PAA)存在下的鹼性條件下共縮合成功合成。透過使用 NaBH4 和 NH3BH3 作為還原劑,並以 K2PtCl4 作為鉑前體,採用雙還原法將鉑奈米顆粒還原在 NS-1B-10 的孔隙中,形成Pt (10)@NS-1B-10。接著使用氫氟酸酸洗蝕刻矽材,形成(Pt (10)@NS-1B-10-Removed)促使材料上Pt含量變多但結構不改變,提升催化活性。透過粉末X射線繞射(XRD)、N2吸附-脫附等溫曲線(BET)、掃描電子顯微鏡(SEM)和穿透電子顯微鏡(TEM)對材料進行鑑定。亦在研究中探討不同濃度(M/AB)、反應溫度以及促進劑NaOH用量等優化條件,以加速硼烷氨水解脫氫反應的進行。經過實驗優化, (Pt (10)@NS-1B-10-Removed) 之Pt樣品球體展現出優異的催化活性,對於 NH3BH¬3 的水解脫水,轉換頻率 (TOF) 為 360 mol H2 min -1 mol Catalyst -1 ,約比Pt 嵌入NS-1B-10 高6 倍(Pt (10)@NS-1B-10)。
第二部分研究中,本研究利用直接合成法,將磺酸官能基修飾在中孔洞矽材SBA-15上。透過調整磺酸官能基與TEOS的比例,可合成出S15SX(X=5, 10)的樣品,再摻雜銀奈米粒子。經由BET, SEM, TEM, XRD等儀器鑑定後並應用在催化降解染料上。經過實驗優化,Ag(0.5)@S15S5 此催化劑對於染料均表現出較高的降解效果。
摘要(英) Mesoporous silicas SBA-1 functionalized were successfully synthesized via co-condensation of tetraethyl orthosilicate (TEOS) under basic conditions using hexadecyl pyridinium chloride (CPC) and poly(acrylic acid) (PAA) as templates. SBA-1, serving as the starting material, undergoes chemical modification in the presence of 3-aminopropyltriethoxysilane (APTES). The modified product is named NS-1B-10. The Pt NPs were forms inside the pores of SBA-1 by using chemical reduction with aqueous solution of NaBH4 and NH3BH3. The materials were characterized by powder X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms(BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hydrogen production through the hydrolysis of NH3BH3 is catalyzed using a Pt@NS-1B-10 catalyst.
In the second part, the direct synthesis method was utilized to modify SBA-15 mesoporous silica with sulfonic acid functional groups. By adjusting the ratio of sulfonic acid functional groups to TEOS, samples designated as S15SX (X=5, 10) were synthesized, followed by the doping of silver nanoparticles. Characterization was performed using BET, SEM, TEM, and XRD techniques, and the materials were applied in catalytic dye degradation. After experimental optimization, the Ag(0.5)@S15S5 catalyst exhibited superior degradation performance for dyes.
關鍵字(中) ★ 觸媒
★ 催化
★ 染料降解
★ 水解產氫
★ 中孔洞矽材
關鍵字(英)
論文目次 摘 要 I
Abstract III
目錄 VI
圖目錄 XIII
表目錄 XIX
1 第一章 緒論 1
1-1 中孔洞矽材 (Mesoprous Silica Materials, MSMs) 1
1-1-1 中孔洞矽材料介紹 1
1-1-2 中孔洞之種類定義 3
1-1-3 界面活性劑性質介紹 5
1-1-4 界面活性劑之種類 6
1-1-5 微胞的形成與結構 8
1-1-6 界面活性劑與矽氧化物的交互作用 12
1-2 具官能基化之中孔洞矽材 14
1-2-1 中孔洞矽材表面修飾 14
1-2-2 中孔洞矽材合成方式 17
1-2-3 表面修飾胺基官能基之中孔洞材料 19
1-2-4 表面修飾磺酸官能基之中孔洞材料 21
第壹部分 具胺基中孔洞矽材SBA-1為擔體合成Pt奈米球作為硼烷氨水解氫氣之催化劑 23
1-3 鉑奈米金屬催化硼烷氨產氫 23
1-3-1 硼烷氨水解產氫 23
1-3-2 奈米金屬粒子對硼烷氨水解脫氫之文獻 25
1-3-3 金屬催化硼烷氨水解脫氫的反應機制圖 27
第貳部分 具磺酸性官能基之中孔洞矽材摻雜Ag奈米粒子之催化研究 28
1-4 中孔洞矽材摻雜奈米銀金屬降解染料 28
1-4-1 染料降解反應 28
1-4-2 中孔洞矽材降解染料 30
1-4-3 磺酸對降解之文獻 31
1-4-4 銀離子對降解之文獻 33
1-5 研究動機與目的 35
2 第二章 實驗部分 36
2-1 實驗藥品 36
2-1-1 第壹部分所使用之藥品 36
2-1-2 第壹部分所使用之藥品 37
2-2 實驗設備 38
2-2-1 實驗合成設備 38
2-2-2 實驗鑑定儀器 38
2-3 儀器鑑定之原理 40
2-3-1 同步輻射中心光束線(NSRRC) 40
2-3-2 紫外光-可見光光譜儀(Ultraviolet-visible spectroscopy) 43
2-3-3 掃描式電子顯微鏡 (SEM) 44
2-3-4 氮氣吸附脫附儀 (ASAP) 46
2-3-5 穿透式電子顯微鏡 (TEM) 50
2-3-6 粉末X光繞射儀 (PXRD) 52
2-3-7 高解析感應耦合電將質譜分析(ICP-MS) 54
2-3-8 光電子能譜 (XPS) 55
2-3-9 傅立葉紅外線吸收光譜儀 (FTIR) 56
2-3-10 元素分析儀 (EA) 57
2-3-11 熱重分析儀 (TGA) 58
2-4 實驗步驟 59
第壹部分 具胺基中孔洞矽材SBA-1為擔體合成Pt奈米球作為硼烷氨水解氫氣之催化劑 59
2-4-1 合成中孔洞矽材SBA-1 (CS-1B-0) 59
2-4-2 以硝酸溶液裂解孔洞中的模板 60
2-4-3 利用後修飾法植入胺基之SBA-1 60
2-4-4 利用雙還原劑進行化學還原法還原釕離子製備鉑奈米金屬 (Pt(X)@NS-1B-10) 61
2-4-5 利用氫氟酸洗鉑奈米金屬 (Pt(X)@NS-1B-10)製備(Pt(X)@NS-1B-10-Removed) 63
2-4-6 材料進行硼烷氨催化水解產氫 64
第貳部分 具磺酸性官能基之中孔洞矽材摻雜Ag奈米粒子之催化研究 68
2-4-7 合成具磺酸官能基之 SBA-15 (S15SX) 68
2-4-8 以硫酸溶液移除中孔洞模板劑 69
2-4-9 合成銀奈米金屬於中孔洞矽材S15S5 70
2-4-10 材料對染料進行降解反應 72
3 第三章 結果與討論 74
第壹部分 具胺基中孔洞矽材SBA-1為擔體合成Pt奈米球作為硼烷氨水解氫氣之催化劑 74
3-1 材料鑑定 74
3-1-1 小角度X光繞射圖 (SAXRD) 74
3-1-2 大角度X光繞射圖 (WAXRD) 77
3-1-3 氮氣吸脫附鑑定 (BET) 79
3-1-4 傅立葉轉換紅外線光譜儀 (FTIR) 83
3-1-5 元素分析 (EA) 84
3-1-6 掃描式電子顯微鏡 (SEM) 85
3-1-7 穿透式電子顯微鏡 (TEM) 90
3-1-8 光電子能譜 (XPS) 97
3-1-9 熱重分析(TGA) 101
3-1-10 感應耦合電漿質譜儀 (ICP-MS) 102
3-2 奈米鉑金屬催化硼烷氨產氫實驗 104
3-2-1 Pt(X)@CS-1B-0催化硼烷氨水解反應 105
3-2-2 Pt(X)@NS-1B-10催化硼烷氨水解反應 107
3-2-3 Pt(X)@NS-1B-10-Removed催化硼烷氨水解反應 109
3-2-4 不同材料對催化硼烷氨水解反應 112
3-2-5 不同M/AB比例對硼烷氨水解反應之比較 114
3-2-6 不同比例NaOH促進劑對硼烷氨水解反應之比較 116
3-2-7 不同溫度對硼烷氨水解反應 118
3-2-8 Pt(10)@NS-1B-10-Removed對硼烷氨製氫重複利用之反應 122
第貳部分 利用具磺酸官能基之中孔矽材負載 Ag降解有機染料 129
3-3 材料鑑定 129
3-3-1 小角度X光繞射圖 (SAXRD) 129
3-3-2 大角度X光繞射圖 (WAXRD) 131
3-3-3 等溫氮氣吸脫附鑑定 (BET) 132
3-3-4 掃描式電子顯微鏡 (SEM) 136
3-3-5 穿透式電子顯微鏡 (TEM) 139
3-3-6 光電子能譜 (XPS) 143
3-4 中孔洞矽材摻雜奈米銀金屬催化染料實驗 145
3-4-1 SBA-15修飾不同比例的磺酸官能基之吸附染料 145
3-4-2 Ag(Y)@S15S5對亞甲藍染料之催化降解 147
3-4-3 Ag(Y)@S15S5在不同pH值之降解亞甲基藍染料 150
3-4-4 Ag(Y)@SBA15在不同pH值之降解亞甲基藍染料 153
3-4-5 Ag(0.5)@S15S5降解亞甲藍重複實驗之回收效率 157
第四章 結論 158
第五章 參考文獻 159
參考文獻 (1) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D. H.; Sheppard, E.; McCullen, S. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
(2) He, Y.; Li, Z.; Ding, X.; Xu, B.; Wang, J.; Li, Y.; Chen, F.; Meng, F.; Song, W.; Zhang, Y. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioactive Materials 2022, 8, 109-123.
(3) Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S.-Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
(4) Budi, C. S.; Deka, J. R.; Saikia, D.; Kao, H.-M.; Yang, Y.-C. Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds. Journal of hazardous materials 2020, 384, 121270.
(5) Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical reviews 1997, 97 (6), 2373-2420.
(6) Rao, N.; Wang, M.; Shang, Z.; Hou, Y.; Fan, G.; Li, J. CO2 adsorption by amine-functionalized MCM-41: a comparison between impregnation and grafting modification methods. Energy & fuels 2018, 32 (1), 670-677.
(7) Kulkarni, S. Recent trends in the applications of zeolites and molecular sieves for the synthesis of speciality and fine chemicals. In Studies in Surface Science and Catalysis, Vol. 113; Elsevier, 1998; pp 151-161.
(8) Kang, T.; Park, Y.; Choi, K.; Lee, J. S.; Yi, J. Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions. Journal of Materials Chemistry 2004, 14 (6), 1043-1049.
(9) Solberg, S. M.; Landry, C. C. Adsorption of DNA into mesoporous silica. The journal of physical chemistry B 2006, 110 (31), 15261-15268.
(10) Hu, Y.; Zhi, Z.; Zhao, Q.; Wu, C.; Zhao, P.; Jiang, H.; Jiang, T.; Wang, S. 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous and Mesoporous Materials 2012, 147 (1), 94-101.
(11) Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
(12) Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials 2016, 1 (6), 1-17.
(13) Kankala, R. K.; Han, Y.-H.; Xia, H.-Y.; Wang, S.-B.; Chen, A.-Z. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. Journal of Nanobiotechnology 2022, 20 (1), 126.
(14) Zhao, X. S.; Lu, G. Q.; Millar, G. J. Advances in Mesoporous Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35 (7), 2075-2090.
(15) Kresge, a. C.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J.; Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710-712.
(16) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
(17) Fayed, T. A.; Shaaban, M. H.; El-Nahass, M. N.; Hassan, F. M. Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection. International Journal of Chemical and Applied Biological Sciences 2014, 1 (6), 74.
(18) Cortés, H.; Hernández-Parra, H.; Bernal-Chávez, S. A.; Prado-Audelo, M. L. D.; Caballero-Florán, I. H.; Borbolla-Jiménez, F. V.; González-Torres, M.; Magaña, J. J.; Leyva-Gómez, G. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials 2021, 14 (12), 3197.
(19) Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R. MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
(20) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568, 10.1039/F29767201525.
(21) Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews 2002, 102 (11), 4093-4138.
(22) Richtering, W. The Colloidal Domain – where physics, chemistry, biology and technology meet. 2001, 11 (4), 177-177. (acccessed 2023-05-26).
(23) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321.
(24) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie (International ed. in English) 2006, 45, 3216-3251.
(25) Soler-Illia, G. J. d. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical reviews 2002, 102 (11), 4093-4138.
(26) Ghorbani, F.; Kamari, S. Core–shell magnetic nanocomposite of Fe3O4@ SiO2@ NH2 as an efficient and highly recyclable adsorbent of methyl red dye from aqueous environments. Environmental Technology & Innovation 2019, 14, 100333.
(27) Boveri, M.; Aguilar-Pliego, J.; Pérez-Pariente, J.; Sastre, E. Optimization of the preparation method of HSO3-functionalized MCM-41 solid catalysts. Catalysis today 2005, 107, 868-873.
(28) Walcarius, A.; Delacôte, C. Rate of access to the binding sites in organically modified silicates. 3. Effect of structure and density of functional groups in mesoporous solids obtained by the co-condensation route. Chemistry of materials 2003, 15 (22), 4181-4192.
(29) Niculescu, V.; Sandru, C.; Paun, N.; Miricioiu, M. An overview on the removal of nitrogen compounds from water and wastewater. Smart Energy and Sustainable Environment 2017, 20 (2), 31-42.
(30) Steel, A.; Carr, S. W.; Anderson, M. W. 29Si solid-state NMR study of mesoporous M41S materials. Chemistry of materials 1995, 7 (10), 1829-1832.
(31) Park, S.; Baeck, S.-H.; Kim, T. J.; Chung, Y.-M.; Oh, S.-H.; Song, I. K. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized mesoporous silica. Journal of Molecular Catalysis A: Chemical 2010, 319 (1-2), 98-107.
(32) Rodríguez-Gómez, A.; Platero, F.; Caballero, A.; Colón, G. Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Molecular Catalysis 2018, 445, 142-151.
(33) Zhou, P.; Blubaum, J. E.; Burns, C. T.; Natale, N. R. The direct synthesis of 2-Oxazolines from carboxylic esters using lanthanide chloride as catalyst. Tetrahedron letters 1997, 38 (40), 7019-7020.
(34) Mallik, A. K.; Moktadir, M. A.; Rahman, M. A.; Shahruzzaman, M.; Rahman, M. M. Progress in surface-modified silicas for Cr(VI) adsorption: A review. Journal of Hazardous Materials 2022, 423, 127041.
(35) Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303. (acccessed 2023/05/25).
(36) Yang, K. N.; Zhang, C. Q.; Wang, W.; Wang, P. C.; Zhou, J. P.; Liang, X. J. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer biology & medicine 2014, 11 (1), 34-43. From NLM.
(37) Li, W.; Zhao, D. An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946, 10.1039/C2CC36964H.
(38) Maria Chong, A.; Zhao, X. Functionalization of SBA-15 with APTES and characterization of functionalized materials. The Journal of Physical Chemistry B 2003, 107 (46), 12650-12657.
(39) Ojeda-López, R.; Pérez-Hermosillo, I. J.; Marcos Esparza-Schulz, J.; Cervantes-Uribe, A.; Domínguez-Ortiz, A. SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio. adsorption 2015, 21, 659-669.
(40) Xu, L.; Yao, F.; Luo, J.; Wan, C.; Ye, M.; Cui, P.; An, Y. Facile synthesis of amine-functionalized SBA-15-supported bimetallic Au–Pd nanoparticles as an efficient catalyst for hydrogen generation from formic acid. RSC advances 2017, 7 (8), 4746-4752.
(41) Melero, J. A.; van Grieken, R.; Morales, G. Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews 2006, 106 (9), 3790-3812.
(42) Paniagua, M.; Cuevas, F.; Morales, G.; Melero, J. A. Sulfonic Mesostructured SBA-15 Silicas for the Solvent-Free Production of Bio-Jet Fuel Precursors via Aldol Dimerization of Levulinic Acid. ACS Sustainable Chemistry & Engineering 2021, 9 (17), 5952-5962.
(43) Wang, Y.; Li, Y.; Wang, Z.; He, X. Hydrogen formation from methane rich combustion under high pressure and high temperature conditions. international journal of hydrogen energy 2017, 42 (20), 14301-14311.
(44) Palo, D. R.; Dagle, R. A.; Holladay, J. D. Methanol steam reforming for hydrogen production. Chemical reviews 2007, 107 (10), 3992-4021.
(45) Alpaydın, C. Y.; Gülbay, S. K.; Colpan, C. O. A review on the catalysts used for hydrogen production from ammonia borane. International Journal of Hydrogen Energy 2020, 45 (5), 3414-3434.
(46) Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 2020, 45 (7), 3847-3869.
(47) Chandra, M.; Xu, Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. Journal of Power Sources 2007, 168 (1), 135-142.
(48) Chen, W.; Fu, W.; Qian, G.; Zhang, B.; Chen, D.; Duan, X.; Zhou, X. Synergistic Pt-WO3 dual active sites to boost hydrogen production from ammonia borane. Iscience 2020, 23 (3).
(49) Akbayrak, S.; Özkar, S. Ruthenium(0) Nanoparticles Supported on Multiwalled Carbon Nanotube As Highly Active Catalyst for Hydrogen Generation from Ammonia–Borane. ACS Applied Materials & Interfaces 2012, 4 (11), 6302-6310.
(50) Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. Journal of Power Sources 2006, 163 (1), 364-370.
(51) Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31 (2), 145-157.
(52) Gao, W.; Zhang, G.; Zhang, X.; Zhou, S.; Wang, Z. Degradation of Methylene Blue in the Photo-Fenton-Like Process with WO3-Loaded Porous Carbon Nitride Nanosheet Catalyst. Water 2022, 14 (16), 2569.
(53) Ulfa, M.; Al Afif, H.; Saraswati, T. E.; Bahruji, H. Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO2/SBA-15 Synthesized by Slow Calcination. Materials 2022, 15 (16), 5471.
(54) Lei, Y.; Cui, Y.; Huang, Q.; Dou, J.; Gan, D.; Deng, F.; Liu, M.; Li, X.; Zhang, X.; Wei, Y. Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceramics International 2019, 45 (14), 17653-17661.
(55) Chaudhuri, H.; Dash, S.; Sarkar, A. Single-Step Room-Temperature in Situ Syntheses of Sulfonic Acid Functionalized SBA-16 with Ordered Large Pores: Potential Applications in Dye Adsorption and Heterogeneous Catalysis. Industrial & Engineering Chemistry Research 2017, 56 (11), 2943-2957.
(56) Jin, Y.; Tang, W.; Wang, J.; Chen, Z.; Ren, F.; Sun, Z.; Wang, F.; Ren, P. High photocatalytic activity of spent coffee grounds derived activated carbon-supported Ag/TiO2 catalyst for degradation of organic dyes and antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 655, 130316.
(57) Vinay, S.; Udayabhanu; Nagarju, G.; Chandrappa, C.; Chandrasekhar, N. Enhanced photocatalysis, photoluminescence, and anti-bacterial activities of nanosize Ag: green synthesized via Rauvolfia tetraphylla (devil pepper). SN Applied Sciences 2019, 1, 1-14.
(58) Li, N.; Wang, J.-G.; Zhou, H.-J.; Sun, P.-C.; Chen, T.-H. Synthesis of single-crystal-like, hierarchically nanoporous silica and periodic mesoporous organosilica, using polyelectrolyte–surfactant mesomorphous complexes as a template. Chemistry of Materials 2011, 23 (18), 4241-4249.
(59) Xu, J.; Liu, W.; Yu, Y.; Du, J.; Li, N.; Xu, L. Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization. RSC Advances 2014, 4 (71), 37470-37478.
(60) Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q. Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
(61) Chandra, M.; Xu, Q. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. Journal of Power Sources 2006, 159 (2), 855-860.
(62) Sharma, M.; Jain, T.; Singh, S.; Pandey, O. Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles. Solar Energy 2012, 86 (1), 626-633.
(63) Cui, C.; Liu, Y.; Mehdi, S.; Wen, H.; Zhou, B.; Li, J.; Li, B. Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3. Applied Catalysis B: Environmental 2020, 265, 118612.
(64) Wei, Z.; Liu, Y.; Peng, Z.; Song, H.; Liu, Z.; Liu, B.; Li, B.; Yang, B.; Lu, S. Cobalt-Ruthenium Nanoalloys Parceled in Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry & Engineering 2019, 7 (7), 7014-7023.
(65) Zhang, J.; Chen, C.; Chen, S.; Hu, Q.; Gao, Z.; Li, Y.; Qin, Y. Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane. Catalysis Science & Technology 2017, 7 (2), 322-329.
(66) Hu, Y.; Wang, Y.; Lu, Z.-H.; Chen, X.; Xiong, L. Core–shell nanospheres Pt@ SiO2 for catalytic hydrogen production. Applied Surface Science 2015, 341, 185-189.
(67) Irum, M.; Zaheer, M.; Friedrich, M.; Kempe, R. Mesoporous silica nanosphere supported platinum nanoparticles (Pt@ MSN): One-pot synthesis and catalytic hydrogen generation. RSC advances 2016, 6 (13), 10438-10441.
(68) Zhang, H.; Zhang, L.; Rodríguez-Pérez, I. A.; Miao, W.; Chen, K.; Wang, W.; Li, Y.; Han, S. Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Applied Surface Science 2021, 540, 148296.
(69) Dai, P.; Zhao, X.; Xu, D.; Wang, C.; Tao, X.; Liu, X.; Gao, J. Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. International Journal of Hydrogen Energy 2019, 44 (53), 28463-28470.
(70) Saha, S.; Basak, V.; Dasgupta, A.; Ganguly, S.; Banerjee, D.; Kargupta, K. Graphene supported bimetallic G–Co–Pt nanohybrid catalyst for enhanced and cost effective hydrogen generation. International journal of hydrogen energy 2014, 39 (22), 11566-11577.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明