博碩士論文 111223064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.86.142
姓名 吳思妤(Si-Yu Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 新型含單與雙取代3H-?並?喃配位基光致變色釕錯合物染料之合成與性質探討
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討
★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討★ 金屬錯合物染料敏化太陽能電池的元件優化
★ 新型三吡啶鋨錯合物染料 合成與配位基效應之探討★ 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池
★ 多聯吡啶釕錯合物光敏化染料的合成與性質探討★ 優化含氯元素之多聯吡啶釕錯合物敏化太陽能電池與元件特性探討
★ 釕與鋨錯合物染料敏化太陽能電池性能優化與特性探討★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2031-1-1以後開放)
摘要(中) 染料敏化太陽能電池(Dye-sensitized solar cells,DSCs)中,染料分子負責吸收光子進而產生光電流,是影響元件光電轉換效率的重要因素,若以具有光致變色特性的分子作為染料將可能強化其應用範疇,但至今僅有全有機光致變色染料應用於DSCs的研究成果,因此本研究的分子設計是在2,2′-聯?啶上分別連接單/雙取代3H-?並?喃基團的兩種新型光致變色配位基(L66和L68),並將其配位至釕金屬合成出錯合物染料CYC-66和CYC-68。實驗上嘗試兩種合成方法,分別是將中間產物Ru(dcbpy)2Cl2導入AgNO3協助置換氯離子配位基後與L66/L68進行配位,以及先合成CYC-66 ester和CYC-68 ester後,再嘗試以不同水解路徑合成CYC-66和CYC-68。從水解前後的1H-NMR光譜圖可得知,溫和的水解條件是合成CYC-66和CYC-68的重要關鍵,並且使用有機鹼(40當量的NEt3)水解後的產物相較於使用無機鹼(45當量的Na2CO3)水解產物在d6-DMSO中具有更好的穩定性。CYC-66、CYC-68與本實驗室王道融學長合成之連接兩個3H-?並?喃單元的CYC-64具有相近的吸收波段(均落在約295–550 nm的範圍內),顯示這些錯合物在紫外至可見光區域的吸光特性相似,惟於325–375 nm因2,2′-聯?啶和3H-?並?喃的π → π*躍遷產生的吸收肩峰略有不同。此外,CYC-68和CYC-64亦表現出相近的吸收係數,皆約為CYC-66的1.2倍。在元件表現方面,無論是否添加共吸附劑,三種染料敏化元件的JSC值皆隨照射時間增加而出現活化現象,其中未添加共吸附劑的CYC-68敏化元件變化最顯著(由3.29 mA·cm-2提高至4.63 mA·cm-2)。照射AM 1.5G模擬太陽光超過1000秒後,三者的JSC值相近:CYC-64 / CYC-64+BPHA為4.49 / 6.09 mA·cm-2,CYC-66 / CYC-66+BPHA為4.29 / 6.20 mA·cm-2,CYC-68 / CYC-68+BPHA為4.63 / 5.94 mA·cm-2。實驗結果顯示,單取代3H-Naphthopyran的CYC-66因分子大小適中,吸附上TiO2後可形成更緊密的排列,因此提高其敏化元件的光捕獲效率。最終,添加5 mM BPHA後,CYC-64、CYC-66與CYC-68敏化元件的光電轉換效率分別達到2.37%、2.42%與2.32%。
摘要(英) In dye-sensitized solar cells (DSCs), dye molecules are responsible for absorbing light energy and generating photocurrent, making them a crucial factor influencing the photovoltaic conversion efficiency of the device. The use of photochromic molecules as dyes can enhance their application scope. However, to date, only fully organic photochromic dyes have been explored in DSC research. Therefore, this study focuses on the molecular design of two novel photochromic ligands, L66 and L68, which feature mono- and bis-3H-naphthopyran groups attached to a bipyridine core. These ligands were subsequently coordinated to ruthenium, forming the corresponding dye complexes, CYC-66 and CYC-68. Two synthetic approaches were attempted: one involved ligand exchange, facilitated by AgNO3, to remove chloride ions, thereby enabling the coordination of L66 or L68 to the ruthenium center; the other involved the synthesis of the ester derivatives, CYC-66 ester and CYC-68 ester, followed by different hydrolysis methods to obtain the target compounds. The 1H-NMR spectra measured before and after hydrolysis revealed that mild hydrolysis conditions were crucial for obtaining CYC-66 and CYC-68. Moreover, using an organic base (40 equivalents of NEt3) resulted in more excellent solution stability than using an inorganic base (45 equivalents of Na2CO3). CYC-66 and CYC-68, along with CYC-64 (which also contains two 3H-naphthopyran units), exhibited similar absorption bands within the range of approximately 295–550 nm, indicating comparable absorption properties in the ultraviolet-visible region. However, in the 325–375 nm range, slight differences were observed in the absorption shoulder peaks due to the π → π* transitions of the bipyridine and 3H-naphthopyran moieties. Additionally, CYC-68 and CYC-64 showed similar molar absorption coefficients, both approximately 1.2 times higher than that of CYC-66. Regarding device performance, the JSC values of all three dye-sensitized devices increased over time under illumination, exhibiting a photoactivation phenomenon regardless of the presence of a co-adsorbent. Among them, the CYC-68 sensitized devices (without BPHA) showed the most significant change, with JSC increasing from 3.29 mA·cm-2 to 4.63 mA·cm-2. After more than 1000 seconds of AM 1.5G illumination, the JSC values of the three devices became comparable: CYC-64 / CYC-64+BPHA at 4.49 / 6.09 mA·cm-2, CYC-66 / CYC-66+BPHA at 4.29 / 6.20 mA·cm-2, and CYC-68 / CYC-68+BPHA at 4.63 / 5.94 mA·cm-2. These data suggest that the mono-substituted 3H-Naphthopyran structure of CYC-66, due to its more suitable molecular size, enables a more compact arrangement upon adsorption onto TiO2, thereby enhancing light-harvesting efficiency. Consequently, after adding 5 mM BPHA, the power conversion efficiencies of the CYC-64, CYC-66, and CYC-68 sensitized devices reached power conversion efficiency (PCE) of 2.37%, 2.42%, and 2.32%, respectively.
關鍵字(中) ★ 光致變色
★ 染料敏化太陽能電池
★ 釕錯合物
★ 3H-?並?喃
關鍵字(英) ★ photochromic
★ dye sensitized solar cell
★ Ruthenium complex
★ 3H-Naphthopyran
論文目次 目錄
中文摘要 V
Abstract VIII
謝誌 X
目錄 XI
圖目錄 XIV
表目錄 XXII
附錄目錄 XXIII
第一章、 緒論 1
1-1前言 1
1-2 太陽光譜與太陽能電池的光伏參數 2
1-3 太陽能電池的發展歷史簡介 6
1-4染料敏化太陽能電池的工作原理 8
1-5 Naphthopyran材料的應用 10
1-6光致變色染料敏化太陽能電池的優勢 11
1-7 染料分子設計相關文獻探討 12
1-7-1首個光致變色染料應用於染料敏化太陽能電池 14
1-7-2 含Naphthopyran染料所敏化的染料敏化太陽能電池 18
1-7-3 2H和3H-Naphthopyran的褪色速率 33
1-7-4光致變色單元的多寡對吸光性質的影響 35
1-8研究動機 38
第二章、 實驗部分 40
2-1實驗藥品 40
2-2中間產物之結構與簡稱 44
2-3儀器分析與樣品製備 46
2-4合成流程與實驗 55
2-5染料敏化太陽能電池元件組裝流程 78
第三章、 結果與討論 81
3-1合成方式探討 81
3-1-1嘗試以直接配位方式合成光致變色釕錯合物CYC-66與CYC-68 81
3-1-2光致變色釕錯合物CYC-66 ester與CYC-68 ester合成路徑探討 86
3-1-3光致變色釕錯合物CYC-66 ester與CYC-68 ester的水解方法探討 94
3-2光致變色釕錯合物染料的結構鑑定 101
3-3光致變色釕錯合物分子前置軌域理論計算結果 119
3-4光致變色配位基與釕錯合物光物理性質探討 122
3-4-1光致變色釕錯合物的吸收光譜量測 122
3-4-2光致變色釕化合物照射不同光源後的吸收光譜量測 132
3-4-3光致變色釕錯合物的螢光光譜量測 139
3-4-4光致變色化合物在TLC片上的變色特性 140
3-5光致變色釕錯合物電化學性質與前置軌域位能 143
3-6光致變色釕錯合物染料敏化電池CYC-66與CYC-68元件之性能探討 147
第四章、 結論 152
參考文獻 154
附錄 164
參考文獻 [1] https://enlitechnology.com/blog/pv/ss-x-solar-simulatior/solar-simulator-01/. (2024/04/12)
[2] https://solarpost.in/basics/i-v-curve-solar-pv/. (2024/04/12)
[3] M. Piliougine, P. Sanchez-Friera and G. Spagnuolo, Comparative of IEC 60891 and other procedures for temperature and irradiance corrections to measured I–V characteristics of photovoltaic devices, Energies 2024, 17, 566.
[4] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, Electrolytes in dye-sensitized solar cells, Chem. Rev. 2015, 115, 2136?2173.
[5] M. A. Green, E. D. Dunlop, M.Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao and J. Y. Jiang, Solar cell efficiency tables (version 65), Prog. Photovolt: Res. Appl. 2025, 33, 3?15.
[6] https://www.nrel.gov/pv/cell-efficiency.html. (2024/04/12)
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 1976, 261, 402?403.
[8] B. Regan and M. Gratzel, A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737?740.
[9] Q. Huaulme, V. M. Mwalukuku, D. Joly, J. Liotier, Y. Kervella, P. Maldivi, S. Narbey, F. Oswald, A. J. Riquelme, J. A. Anta and R. Demadrille, Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency, Nat. Energy 2020, 5, 468?477.?
[10] J. Liotier, V. M. Mwalukuku, S. Fauvel, A. J. Riquelme, J. A. Anta, P. Maldivi and R. Demadrille, Photochromic naphthopyran dyes incorporating a benzene, thiophene, or furan spacer: Effect on photochromic, optoelectronic, and photovoltaic properties in dye-sensitized solar cells, Sol. RRL 2022, 6, 2100929.
[11] V. M. Mwalukuku, J. Liotier, A. J. Riquelme, Y. Kervella, Q. Huaulme, A. Haurez, S. Narbey, J. A. Anta and R. Demadrille, Strategies to improve the photochromic properties and photovoltaic performances of naphthopyran dyes in dye-sensitized solar cells, Adv. Energy Mater. 2023, 13, 2203651.
[12] S. Fauvel, A. J. Riquelme, J. M. A. Castan, V. M. Mwalukuku, Y. Kervella, V. K. Challuri, F. Sauvage, S. Narbey, P. Maldivi, C. Aumaitre and R. Demadrille, Push-pull photochromic dyes for semi-transparent solar cells with light-adjustable optical properties and high color-rendering index, Chem. Sci. 2023, 14, 8497?8506.
[13] H. Wu, A. Huang, Q. Liao, P. Lin, W. Yao, Q. Li and Z. Li, Photothermally promoted photoisomerization of naphthopyran-based dyes to achieve sensitive photodeformation under sunlight, ACS Materials Lett. 2023, 5, 753?761.
[14] M. E. McFadden, R. W. Barber, A. C. Overholts and M. J. Robb, Naphthopyran molecular switches and their emergent mechanochemical reactivity, Chem. Sci. 2023, 14, 10041–10067.
[15] C. M. Sousa, J. R. Fernandes and P. J. Coelho, Naphthopyrans as efficient dual color photoinitiators for volumetric 3D printing, Eur. Polym. J. 2023, 196, 112312.
[16] S. Seipel, J. Yu and V. A. Nierstrasz, Effect of physical parameters and temperature on the piezo?electric jetting behaviour of UV?curable photochromic inks, Sci. Rep. 2020, 10, 18841.
[17] S. Seipel, J. Yu, M. Vikova, M. Vik, M. Koldinska, A. Havelka and V. A. Nierstrasz, Color performance, durability and handle of inkjet-printed and UV-cured photochromic textiles for multi-colored applications, Fibers Polym. 2019, 20, 1424?1435.
[18] M. T. Abate, S. Seipel, J. Yu, M. Vikova, M. Vik, A. Ferri, J. Guan, G. Chen and V. Nierstrasz, Supercritical CO2 dyeing of polyester fabric with photochromic dyes to fabricate UV sensing smart textiles, Dyes Pigm. 2020, 183, 108671.
[19] A. Nasir, M. A. Sikandar, M. Hussain, A. Qazi, S. Saher and Q. Jamal, Preparation and application of waterresistant SiO2 coated naphthopyran derivatives based photochromic pigment in fabricating reversible photochromic cement pastes, Silicon 2022, 14, 3707?3721.
[20] S. Peng, J. Wen, M. Hai, Z. Yang, X. Yuan, D. Wang, H. Cao and W. He, Synthesis and application of reversible fluorescent photochromic molecules based on tetraphenylethylene and photochromic groups, New J. Chem. 2019, 43, 617?621.
[21] J. Hu, S. Yang, Z. Chen, Y. Chen and J. Wei, Inverse opal photonic crystals for real-time identifiable labels via ultraviolet and near-infrared light, ACS Appl. Polym. Mater. 2023, 5, 1002?1013.
[22] F. J. Shareef, S. Sun, M. Kotecha, I. Kassem, D. Azar and M. Cho, Engineering a light-attenuating artificial iris, Investig. Ophthalmol. Vis. Sci. 2016, 57, 2195?2202.
[23] K. H. Cheng, T. L. Hsieh, S. J. Liu, C. J. Chiang and J. C. Chen, Synthesis and characterization of indeno-fused naphthopyrans containing methacryloyl and urethane groups for photochromic contact lenses applications, Eur. Polym. J. 2024, 211, 113044.
[24] L. Liu, A. Wang, G. Wang, J. Li and Y. Zhou, A naphthopyran-rhodamine based fluorescent and colorimetric chemosensor for recognition of common trivalent metal ions and Cu2+ ions, Sens. Actuators B Chem. 2015, 215, 388?395.
[25] A. Kumar, A. Datta and S. Kumar, A photo-reversible, sensitive, and selective sensor for copper ions in an aqueous medium, J. Mol. Struct. 2022, 1260, 132807.
[26] Z. M. Dong, H. Ren, J. N. Wang and Y. Wang, A new naphthopyran-based chemodosimeter with aggregation-induced emission: Selective dual-channel detection of cyanide ion in aqueous medium and test strips, Microchem. J. 2020, 155, 104676.
[27] M. Lv, Y. Zhang, J. Fan, Y. Yang, S. Chen, G. Liang and S. Zhang, A near-infrared fluorescent probe for ratiometric sensing of SO2 in cells and zebrafish, Analyst 2020, 145, 7985?7992.
[28] L. Chen, C. Niu, Z. Xie and N. Tan, Fluorescence sensor for nitrofurazone using 4-methyl-7-allyloxynaphtho[1,2-b]pyran-2-ketone as sensing carrier, J. Anal. Chem. 2010, 65, 260?266.
[29] P. R. Sahoo, K. Sairam, R. Kumar, K. P. Rana and S. Kumar, Synthesis and experimental investigations of a photoactive naphthopyran for sensing nanomolar concentration of ammonia, J. Photochem. Photobiol. A 2024, 454, 115749.
[30] A. Roy, A. Ghosh, S. Bhandari, P. Selvaraj, S. Sundaram and T. K. Mallick, Color comfort evaluation of dye-sensitized solar cell (DSSC) based building-integrated photovoltaic (BIPV) glazing after 2 years of ambient exposure, J. Phys. Chem. C 2019, 123, 23834?23837.
[31] M.Saifullah, J. Gwakab and J. H. Yun, Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV), J. Mater. Chem. A 2016, 4, 8512?8540.
[32] N. M. Johnson, Y. Y. Smolin, C. Shindler, D. Hagaman, M. Soroush, K. K. S. Lau and H. F Ji, Photochromic dye-sensitized solar cells, AIMS Mater. Sci. 2015, 2, 503?509.
[33] S. Ma, H. Ting, Y. Ma, L. Zheng, M. Zhang, L. Xiao and Z. Chen, Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers, AIP Adv. 2015, 5, 057154.
[34] J. M. A. Castan, V. M. Mwalukuku, A. J. Riquelme, J. Liotier, Q. Huaulme, J. A. Anta, P. Maldivi and R. Demadrille, Photochromic spiro-indoline naphthoxazines and naphthopyrans in dye-sensitized solar cells, Mater. Chem. Front. 2022, 6, 2994?3005.
[35] A. I. Simpang, A. Ghifari, S. Y. Han, D. Hayati, D. X. Long, Y. H. Jang and J. Hong, Metal-free organic dyes featuring an azobenzene bridge for photochromic dye-sensitized solar cells, ChemistrySelect 2023, 8, e202204571.
[36] M. Hara and R. Ejima, Fabrication and characterization of co-sensitized dye solar cells using energy transfer from spiropyran derivatives to SQ2 dye, Molecules 2024, 29, 4896.
[37] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 2010, 110, 6595?6663.
[38] W. Wu, J. Wang, Z. Zheng, Y. Hu, J. Jin, Q. Zhang and J. Hua, A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells, Sci, Rep. 2015, 5, 8592.
[39] S. K. Osler, M. E. McFadden and M. J. Robb, Comparison of the reactivity of isomeric 2H- and 3H-naphthopyran mechanophores, J Polym Sci. 2021, 59, 2537?2544.
[40] C. C. Ko, L. X. Wu, K. M. C. Wong, N. Zhu and V. W. W. Yam, Synthesis, characterization and photochromic studies of spirooxazine-containing 2,2’-bipyridine ligands and their rhenium(I) tricarbonyl complexes, Chem. Eur. J. 2004, 10, 766?776.
[41] M. J. Robb, T. A. Kim, A. J. Halmes, S. R. White, N. R. Sottos and J. S. Moore, Regioisomer-specific mechanochromism of naphthopyran in polymeric materials, J. Am. Chem. Soc. 2016, 138, 12328?12331.
[42] V. P. Grachev, G. M. Bakova, L. I. Makhonina, E. A. Yurieva, S. M. Aldoshin, A. M. Gorelik and V. A. Barachevskii, Synthesis and study of photochromic properties of copolymers based on functionalized chromenes, Russ. Chem. Bull. 2011, 60, 1469?1475.
[43] K.M. McElhinny, P. Huang, Y. Joo, C. Kanimozhi, A. Lakkham, K. Sakurai, P. G. Evans and P. Gopalan, Optically reconfigurable monolayer of azobenzene donor molecules on oxide surfaces, Langmuir 2017, 33, 2157?2168.
[44] C. C. Ko, L. X. Wu, M. C. Wong, N. Zhu and W. W. Yam, Synthesis, characterization and photochromic studies of spirooxazine containing 2,2’-bipyridine ligands and their rhenium(I) tricarbonyl complexes, Chem. Eur. J. 2004, 10, 766?776.
[45] C. L. Fraser, N. R. Anastasi and J. J. S. Lamba, Synthesis of halomethyl and other bipyridine derivatives by reaction of 4,4’-bis[(trimethylsilyl)methyl]-2,2’-bipyridine with electrophiles in the presence of fluoride ion, J. Org. Chem. 1997, 62, 9314?9317.
[46] T. Huang, Q. Yu, S. Liu, K. Y. Zhang, W. Huang and Q. Zhao, Rational design of phosphorescent iridium(III) complexes for selective glutathione sensing and amplified photodynamic therapy, ChemBioChem 2019, 20, 576?586.
[47] J. I. Son, A. Kim, H. B. Noh, H. J. Lee, Y. B. Shim and K. H. Park, Synthesis and catalytic hydrogen transfer reaction of ruthenium(II) complex, Bull. Korean Chem. Soc. 2012, 33, 319?321.
[48] L. S. Matos, R. C. Amaral and N. Y. M. Iha, Visible photosensitization of trans-styrylpyridine coordinated to fac-[Re(CO)3(dcbH2)]+: New insights, Inorg. Chem. 2018, 57, 9316?9326.
[49] A. Ambroise, R. W. Wagner, P. D. Rao, J. A. Riggs, P. Hascoat, J. R. Diers, J. Seth, R. K. Lammi, D. F. Bocian, D. Holten and J. S. Lindsey, Design and synthesis of porphyrin-based optoelectronic gates, Chem. Mater. 2001, 13, 1023?1034.
[50] Y. Q. Fang, M. I. J. Polson and G. S. Hanan, Creating new binding sites in ligands and metal complexes using the Negishi cross-coupling reaction, Inorg. Chem. 2003, 42, 5?7.
[51] P. Byabartta, Heteroleptic tris-chelates of ruthenium(II): Synthesis, spectral characterization and electrochemical properties, Spectrochim. Acetonea A 2007, 66, 521?533.
[52] R. M. O’Donnell, R. N. Sampaio, G. Li, P. G. Johansson, C. L. Ward and G. J. Meyer, Photoacidic and photobasic behavior of transition metal compounds with carboxylic acid group(s), J. Am. Chem. Soc. 2016, 138, 3891?3903.
[53] G. Konti, G. C. Vougioukalakis, M. Bidikoudi, A. G. Kontos, C. Methenitis and P. Falaras, A Ru(II) molecular antenna bearing a novel bipyridine–acrylonitrile ligand: Synthesis and application in dye solar cells, Polyhedron 2014, 82, 12?18.
[54] A. Philippopoulos, P. Falaras, E. Chatzivasiloglou, O. I. Markopoulou, V. Likodimos and G. C. Konti, Synthesis and spectroscopic characterization of new heteroleptic ruthenium(II) complexes incorporating 2-(2’-pyridyl)quinoxaline and 4-carboxy-2-(2’-pyridyl)quinoline, J Coord Chem 2012, 65, 2535?2548.
[55] A. Kroll, K. Monczak, D. Sorsche and S. Rau, A luminescent ruthenium azide complex as a substrate for copper-catalyzed click reactions, Eur. J. Inorg. Chem. 2014, 3462?3466.
[56] 黃品嘉,2022,國立中央大學化學研究所碩士學位論文(新型三?啶鋨錯合物染料合成與配位基效應之探討)。
[57] C. C. Chou, F. C. Hu, K. L. Wu, T. Duan, Y. Chi, S. H. Liu, G. H. Lee and P. T. Chou, 4,4’,5,5’-tetracarboxy-2,2’-bipyridine Ru(II) sensitizers for dye-sensitized solar cell, Inorg. Chem. 2014, 53, 8593?8599.
[58] X. Su, L. Guo, Y. Ma and X. Li, A mercuric ensemble based on a cycloruthenated complex as a visual probe for iodide in aqueous solution, Spectrochim Acta A 2016, 152, 468?474.
[59] T. Rawling, F. Buchholz and A. M. McDonagh, Convenient synthesis and purification of [Bu4N]2 [Ru(4-carboxy-4-carboxylate-2,2’-bipyridine)2(NCS)2]: A landmark DSC dye, Aust. J. Chem. 2008, 61, 405?408.
[60] R. M. Caraballo, P. Rosi, J. H. Hodak and L. M. Baraldo, Photosubstitution of monodentate ligands from Ru(II) ?dicarboxybipyridine complexes, Eur. J. Inorg. Chem. 2017, 3612?3621.
[61] C. Y. Chen, Y. M Feng, T. Y. Wu, Y. C. Liu, S. Y. Chen, T. Y. Lin, H. H. G. Tsai and C. G. Wu, Terpyridyl ruthenium complexes functionalized with conjugated heterocycles for panchromatic dye-sensitized solar cells, ACS Appl. Energy Mater. 2021, 4, 13461?13470.
[62] L. X. Santana, C. C. Vidyasagar, B. M. M. Flores, V. M. Jimeerez, Microwave assisted organic syntheses (MAOS): The green synthetic method, 《Handbook of Greener Synthesis of Nanomaterials and Compounds》2021, 1 (Fundamental Principles and Methods), 491?542.
[63] R. Y. Wang, C. W. Li, S. T. Cho, C. H. Chang, J. J. Chen and T. L. Shih, Synthesis of cinnamils and quinoxalines and their biological evaluation as anticancer agents, Arch. Pharm. 2022, 355, e2100448.
[64] R. Haraguchi, Y. Takada and S. Matsubara, Preparation of cycloheptane ring by nucleophilic cyclopropanation of 1,2-diketones with bis(iodozincio)methane, Org. Biomol. Chem. 2015, 13, 241?247.
[65] E. C. Constable, A. H. Redondo, C. E. Housecroft, M. Neuburger and S. Schaffner, Copper(i) complexes of 6,6′-disubstituted 2,2′-bipyridine dicarboxylic acids: New complexes for incorporation into copper-based dye sensitized solar cells (DSCs), Dalton Trans. 2009, 6634?6644.
[66] V. Mukkala and J. Kankare, New 2,2′-bipyridine derivatives and their luminescence properties with europium(III) and terbium(III) ions, Helv. Chim. Acta 1992, 75, 1578?1592.
指導教授 陳家原(Chia-Yuan Chen) 審核日期 2025-3-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明