博碩士論文 111223070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.224.52.124
姓名 楊宸睿(Cheng-Jui Yung)  查詢紙本館藏   畢業系所 化學學系
論文名稱 卡本之造幣金屬錯合物的合成及性質探討
(Synthesis and Studies of Carbone Coinage-Metal Complexes)
相關論文
★ 具氧化還原性的同碳雙碳烯金錯合物和雙芽手性卡本衍生物及其金屬錯合物之合成與結構鑑定★ 以咪唑并[1,5-a]吡啶結構所合成的同碳雙碳烯之雙金屬錯合物的合成、鑑定以及反應性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 卡本 (carbone) 是一種中心碳為零價且具有兩對孤對電子的分子,它的第一對孤對電子具有很強的供電子能力,因此常作為配位基應用在過態金屬的配位化學及催化反應中。
本論文將以卡本化合物同碳雙碳烯及同碳膦烷碳烯作為配位基,然後與不易被氧化的金鍵結形成雙卡本金錯合物,並針對其第二對孤對電子進行研究。首先,將此錯合物與雙三氟甲磺酸亞胺銀鹽 (AgNTf2) 進行氧化反應,可以氧化卡本的第二對孤對電子而形成自由基金錯合物。我們利用核磁共振、電子順磁共振及X-ray單晶繞射等儀器鑑定這些自由基金錯合物。其中,所合成的雙自由基金錯合物,可以同時利用核磁共振與電子順磁共振測得其光譜,內容中將探討其單重態與三重態間互相轉換的可能性。
我們也發現同碳膦烷碳烯金錯合物在氧化形成雙自由基金錯合物時,在反應過程中會先利用其第二對孤對電子與銀試劑配位,形成三金屬錯合物的中間體。因此,我們利用雙卡本金錯合物的第二對孤對電子的配位能力,合成一系列特殊的三金屬錯合物;由結果發現,以同碳膦烷碳烯作為配位基的錯合物,與其鍵結的金屬會傾向配位於反側;而以同碳雙碳烯作為配位基的錯合物,與其鍵結的金屬則會傾向於同側。因此,我們利用同向金屬與反向金屬的錯合物作為催化劑進行催化反應,並比較不同位向的金屬錯合物的催化效果。
摘要(英) Carbones are molecules where the central carbon is in the zero oxidation state and possesses two lone pairs of electrons. The first lone pair exhibits strong electron-donating abilities, making carbones effective ligands in coordination chemistry and catalysis involving transition metals.
This thesis explores the use of carbones, specifically carbodicarbene and carbophosphinocarbene, as ligands to form bis-carbone metal complexes with oxidation-resistant gold and focuses on studying the second lone pair of electrons in these complexes. Initially, the bis-carbone gold complexes undergo oxidation with silver bis(trifluoromethanesulfonyl)imide (AgNTf2), targeting the second lone pair of electrons to generate radical gold complexes. These radical complexes are characterized using NMR spectroscopy, EPR spectroscopy, and single-crystal XRD. Notably, the synthesized diradical gold complexes allow for the observation of both NMR and EPR spectra, providing insights into the potential interconversion between singlet and triplet states.
Furthermore, we observed that during the oxidation process to form diradical gold complexes, the carbophosphinocarbene gold complex at first coordinates with the silver reagent via its second lone pair, leading to the formation of a trinuclear heterometallic intermediate. Utilizing the coordinating ability of the second lone pair in bis-carbone gold complexes, we synthesized a series of unique trinuclear heterometallic complexes. Our findings indicate that gold complexes with carbophosphinocarbene as ligands tend to coordinate metals in an anti-arrangement, while those with carbodicarbene prefer a syn-arrangement.
Consequently, we employed these syn- and anti-configured metal complexes as catalysts in various reactions, comparing their catalytic efficiencies. The comparative analysis provides valuable insights into the influence of ligand orientation on catalytic performance.
關鍵字(中) ★ 卡本
★ 中心碳為零價且具有兩對孤對電子的分子
★ 雙卡本金錯合物
★ 雙自由基金錯合物
★ 催化劑進行催化反應
★ 三金屬錯合物
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
式目錄 vi
附表目錄 xi
附圖目錄 xii
簡稱說明 xvi
第一章 緒論 1
1-1 前言 1
1-2 膦化物 2
1-3 碳烯 5
1-4 含氮雜環碳烯 7
1-5 同碳雙碳烯與同碳膦烷碳烯 11
1-6 金錯合物 21
1-7 研究動機 25
第二章 結果與討論 26
2-1 同碳雙碳烯與同碳膦烷碳烯之合成 26
2-2 同碳雙碳烯與同碳膦烷碳烯的金錯合物之合成與探討 27
2-2-1 雙CDC與雙CPC金錯合物之合成 27
2-2-2 雙CDC與雙CPC金錯合物之結構探討 31
2-2-3 雙CDC與雙CPC金錯合物之性質探討 39
2-2-4 雙CDC與雙CPC自由基之性質研究 43
2-2-5 單CDC與單CPC金錯合物之合成 45
2-2-6 單CDC與單CPC金錯合物之結構探討 49
2-2-7 單CDC與單CPC金錯合物之性質探討 52
2-2-8 CDC與CPC金錯合物氧化反應機制探討 56
2-3 三金屬錯合物之合成及探討 58
2-3-1 利用CPC合成三金屬錯合物及其構型探討 59
2-3-2 利用CDC合成三金屬錯合物及其構型探討 61
2-3-3 三金屬錯合物變溫反應性測試 64
2-3-4 探討位向對於催化活性的影響 66
第三章 結論 70
第四章 實驗方法 72
4-1 實驗儀器 72
4-1-1 核磁共振儀 (Nuclear magnetic resonance spectrometer) 72
4-1-2 高解析度磁場式質譜儀 (High resolution magnetic sector mass spectrometer) 73
4-1-3 X-ray單晶繞射解析 (X-ray single-crystal diffraction analysis) 73
4-1-4 電子順磁共振光譜儀 (Electron paramagnetic resonance) 73
4-2 藥品與溶劑 74
4-3 實驗步驟 75
參考文獻 109
附錄一 X-ray晶體與數據 116
附錄二 核磁共振光譜圖 151
參考文獻 (1) Cahours, A.; Gal, H. Untersuchungen über neue Platinderivate der Phosphorbasen. Justus Liebigs Ann. Chem. 1870, 155, 223-230.
(2) Dalal, M. A Textbook of Inorganic Chemistry–Volume 1; Dalal Institute, 2017.
(3) Tolman, C. A. Phosphorus ligand exchange equilibriums on zerovalent nickel. sDominant role for steric effects. J. Am. Chem. Soc. 1970, 92, 2956-2965.
(4) Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 1977, 77, 313-348.
(5) Chen, L.; Ren, P.; Carrow, B. P. Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds. J. Am. Chem. Soc. 2016, 138, 6392-6395.
(6) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39-92.
(7) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485-496.
(8) Hermann, W.; Weskamp, T.; Bohm, V. P. Metal complexes of stable carbenes. Adv. Organomet. Chem. 2001, 48, 1-71.
(9) Weskamp, T.; Böhm, V. P.; Herrmann, W. A. N-Heterocyclic carbenes: state of the art in transition-metal-complex synthesis. J. Organomet. Chem. 2000, 600, 12-22.
(10) Wanzlick, H. W.; Schönherr, H. J. A. C. Direct Synthesis of a Mercury Salt‐Carbene Complex. Angew. Chem., Int. Ed. Engl. 1968, 7, 141-142.
(11) Arduengo III, A. J.; Harlow, R. L.; Kline, M. A stable crystalline carbene.
J. Am. Chem. Soc. 1991, 113, 361-363.
(12) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. A sterically demanding nucleophilic carbene: 1, 3-bis (2, 6-diisopropylphenyl) imidazol-2-ylidene). Thermochemistry and catalytic application in olefin metathesis. J. Organomet. Chem. 2000, 606, 49-54.
(13) Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Stable cyclic (alkyl)(amino) carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a quaternary carbon atom makes the difference. Angew. Chem., Int. Ed. Engl. 2005, 44, 5705.
(14) Melaimi, M.; Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (alkyl)(amino) carbenes (CAACs): recent developments. Angew. Chem., Int. Ed. 2017, 56, 10046-10068.
(15) Saalfrank, R. W.; Maid, H. Roots: From carbenes to allenes and coordination polymers Ever present never twice the same. Chem. Commun. 2005, 5953-5967.
(16) Kaska, W. C.; Mitchell, D. K.; Reichelderfer, R. Transition metal complexes of hexaphenylcarbodiphosphorane. J. Organomet. Chem. 1973, 47, 391-402.
(17) Petz, W.; Kutschera, C.; Neumüller, B. Reaction of the Carbodiphosphorane Ph3P C PPh3 with Platinum (II) and-(0) Compounds: Platinum Induced Activation of C− H Bonds. Organometallics 2005, 24, 5038-5043.
(18) Vicente, J.; Singhal, A. R.; Jones, P. G. New ylide−, alkynyl−, and mixed alkynyl/ylide− gold (I) complexes. Organometallics 2002, 21, 5887-5900.
(19) Tonner, R.; Frenking, G. C (NHC)2: divalent carbon (0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. Angew. Chem., Int. Ed. 2013, 15.
(20) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Synthesis of an extremely bent acyclic allene (a “carbodicarbene”): a strong donor ligand. Angew. Chem., Int. Ed. 2008, 47, 3206-3209.
(21) Alcarazo, M.; Lehmann, C. W.; Anoop, A.; Thiel, W.; Fürstner, A. Coordination chemistry at carbon. Nat. Chem. 2009, 1, 295-301.
(22) Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.; Ong, T.-G. Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities. Organometallics 2013, 32, 2435-2442.
(23) Hsu, Y. C.; Shen, J. S.; Lin, B. C.; Chen, W. C.; Chan, Y. T.; Ching, W. M.; Yap, G. P.; Hsu, C. P.; Ong, T. G. Synthesis and isolation of an acyclic tridentate bis (pyridine) carbodicarbene and studies on its structural implications and reactivities. Angew. Chem., Int. Ed. 2015, 54, 2420-2424.
(24) Aweke, B. S.; Yu, C. H.; Zhi, M.; Chen, W. C.; Yap, G. P.; Zhao, L.; Ong, T. G. A Bis‐(carbone) Pincer Ligand and Its Coordinative Behavior toward Multi‐Metallic Configurations. Angew. Chem., Int. Ed. 2022, 61, e202201884.
(25) Chen, W. C.; Shen, J. S.; Jurca, T.; Peng, C. J.; Lin, Y. H.; Wang, Y. P.; Shih, W. C.; Yap, G. P.; Ong, T. G. Expanding the ligand framework diversity of carbodicarbenes and direct detection of boron activation in the methylation of amines with CO2. Angew. Chem. 2015, 127, 15422-15427.
(26) Au‐Yeung, K. C.; Xiao, D.; Shih, W. C.; Yang, H. W.; Wen, Y. S.; Yap, G. P.; Chen, W. C.; Zhao, L.; Ong, T. G. Carbodicarbene: geminal‐Bimetallic Coordination in Selective Manner. Chem. Eur. J. 2020, 26, 17350-17355.
(27) Walley, J. E.; Warring, L. S.; Wang, G.; Dickie, D. A.; Pan, S.; Frenking, G.; Gilliard Jr, R. J. Carbodicarbene bismaalkene cations: unravelling the complexities of carbene versus carbone in heavy pnictogen chemistry. Angew. Chem. 2021, 133, 6756-6764.
(28) Chan, S. C.; Gupta, P.; Engelmann, X.; Ang, Z. Z.; Ganguly, R.; Bill, E.; Ray, K.; Ye, S.; England, J. Observation of carbodicarbene ligand redox noninnocence in highly oxidized iron complexes. Angew. Chem., Int. Ed. 2018, 57, 15717-15722.
(29) Chan, S.-C.; Ang, Z. Z.; Gupta, P.; Ganguly, R.; Li, Y.; Ye, S.; England, J. Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Chromium and Cobalt Complexes. Inorg. Chem. 2020, 59, 4118-4128.
(30) Ito, Y.; Sawamura, M.; Hayashi, T. Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J. Am. Chem. Soc. 1986, 108, 6405-6406.
(31) Liu, L.-P.; Xu, B.; Mashuta, M. S.; Hammond, G. B. Synthesis and Structural Characterization of Stable Organogold(I) Compounds. Evidence for the Mechanism of Gold-Catalyzed Cyclizations. J. Am. Chem. Soc. 2008, 130, 17642-17643.
(32) Harris, R.; Widenhoefer, R. Gold carbenes, gold-stabilized carbocations, and cationic intermediates relevant to gold-catalysed enyne cycloaddition. Chem. Soc. Rev. 2016, 45, 4533-4551.
(33) Gaillard, S.; Slawin, A. M.; Bonura, A. T.; Stevens, E. D.; Nolan, S. P. Synthetic and structural studies of [AuCl3 (NHC)] complexes. Organometallics 2010, 29, 394-402.
(34) Wu, C.-Y.; Horibe, T.; Jacobsen, C. B.; Toste, F. D. Stable gold (III) catalysts by oxidative addition of a carbon–carbon bond. Nat. 2015, 517, 449-454.
(35) Rocchigiani, L.; Bochmann, M. Recent advances in gold (III) chemistry: structure, bonding, reactivity, and role in homogeneous catalysis. Chem. Rev. 2020, 121, 8364-8451.
(36) Fürstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Coordination chemistry of ene-1, 1-diamines and a prototype" Carbodicarbene". Angew. Chem., Int. Ed. 2008, 47, 3210-3214.
(37) 蔡尚廷,國立中央大學化學系碩士論文,2019。
(38) Abdurahman, A.; Wang, J.; Zhao, Y.; Li, P.; Shen, L.; Peng, Q. A highly stable organic luminescent diradical. Angew. Chem. Int. Ed. 2023, 62 , e202300772.
(39) Rogers, E. I.; Silvester, D. S.; Jones, S. E. W.; Aldous, L.; Hardacre, C.; Russell, A. J.; Davies, S. G.; Compton, R. G. Electrochemical kinetics of Ag vertical bar Ag+ and TMPD vertical bar TMPD+ center dot in the room-temperature ionic liquid [C (4) mpyrr][NTf2]; toward optimizing reference electrodes for voltammetry in RTILs. J. Phys. Chem. C 2007, 111, 13957-13966.
(40) Wang, H. M.; Lin, I. J. Facile synthesis of silver (I)− carbene complexes. Useful carbene transfer agents. Organometallics 1998, 17, 972-975.
(41) Lin, I. J.; Vasam, C. S. Preparation and application of N-heterocyclic carbene complexes of Ag (I). Coord. Chem. Rev. 2007, 251, 642-670.
(42) Chirik, P. J.; Wieghardt, K. Radical ligands confer nobility on base-metal catalysts. Sci. 2010, 327, 794-795.
指導教授 王朝諺 陳銘洲(Tiow-Gan Ong Ming-Chou Chen) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明