博碩士論文 111223085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:157 、訪客IP:18.118.154.230
姓名 林睿瀚(JUI HAN LIN)  查詢紙本館藏   畢業系所 化學學系
論文名稱 低遷移及自固化光起始劑開發
(Development of Low-Migration and Self-Initiating Photoinitiators)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本論文提供一新穎低遷移光固化油墨材料,可作為食品、藥品包裝於印刷時使用。近期食安意識抬頭,為避免光固化後的材料影響食品安全,油墨產業積極尋找一油墨材料其有低遷移特性的光起始劑。而市售常見的光起始劑舉凡二苯甲酮(benzophenone, BP)、異丙基噻噸酮(isopropylthioxanthone, ITX)等光起始劑皆帶有氣味,且容易從印刷品中遷移出來進而影響人體健康。為了克服此光起始劑所帶來的危害,本論文提出一種方法,透過將光起始單元與環氧大豆油(epoxidized soybean oil,ESBO)共聚並引入壓克力基單元,使之於光聚合反應(Norrish reaction)時形成網狀聚合物進以達成低遷移之效果。本論文所研發之引入光起始劑、壓克力基單元之產物ESBOa-BP、ESBOa-TX,其作為光起始劑應用於壓克力樹脂聚合時遷移率低至0.7%、0.2%。相較於單純以二苯甲酮作為光起始劑所帶來的遷移率高達87%及ITX遷移率62.9%,改善後的光起始劑遷移率下降了超過九成。除此之外,透過將光起始單元與反應性起始物單體鍵結,並將其與其他官能基化之單元共聚,亦達到降低光起始單元遷移的效果,其中pGLa-BP、pGLa-TX,遷移率低至1.5%、2.6%。
由於上述所提及之光起始單元皆透過光聚合反應(Norrish reaction)進行光固化,需要添加額外胺偕同劑(amine synergist)方可照光固化,為免除業界進行光聚合之繁瑣步驟,藉由將胺偕同劑鍵結於含光起始單元以及壓克力基單元的環氧大豆油中,即可達到低遷移自固化之光起始劑,ESBOa-BPN便為含有低遷移率以及自固化兩種特性之起始劑,其遷移率低至1.0%。並且胺偕同劑與反應性起始物單體鍵結也可達到此效果,pGLa-BPN亦為其中一例,其遷移率低至1.0%。並且更換成光起始單元ITX之pGLa-TXN,遷移率亦低至0.3%。本篇論文所提出的改性光起始單元,可解決目前光固化產業中遷移率的問題,且將胺偕同劑也一併鍵結到主幹中,能夠更進一步對光起始劑優化,在業界中非常具有未來展望性。
摘要(英) This study presents a novel low-migration photocurable ink material suitable for printing on food and pharmaceutical packaging. In recent years, with the rise of food safety awareness, the ink industry has been actively seeking ink materials with low migration characteristics to avoid chemical materials affecting food safety. Commonly used commercial photoinitiators, such as benzophenone (BP), isopropylthioxanthone (ITX), both have odors and can easily migrate from printed products, thereby affecting human health. To overcome the hazards affacted by these photoinitiators, this study proposes a method that copolymerizes photoinitiating units with epoxidized soybean oil (ESBO) and introduces acrylic units to form a network of polymer during the photopolymerization reaction (Norrish reaction), achieving low migration effects rates.
The developed products, ESBOa-BP and ESBOa-TX, which introduce photoinitiators and acrylic units into ESBO, achieve migration rates of 0.7% and 0.2%, respectively, when used as photoinitiators in acrylic resin polymerization. Whereas benzophenone as a photoinitiator itself has the migration rate as high as 87%, and ITX has displayed 62.9% of migration rate which is a drastic difference compared to our proposed results. Additionally, by binding photoinitiating units with monomer and copolymerizing with other functionalized units, further reduction in the migration of photoinitiating units was achieved. The migration rates for pGLa-BP and pGLa-TX reached 1.5% and 2.6%, respectively.
Given that the aforementioned photoinitiating units undergo photopolymerization (Norrish reaction) for photocuring, requiring the addition of amine synergists for effective curing, the industry seeks to simplify this process. By binding the amine synergist to the epoxy soybean oil containing photoinitiating and acrylic units, a low-migration, self-curing photoinitiator can be achieved. ESBOa-BPN, which combines low migration and self-curing characteristics, has a migration rate of 1.0%. Similarly, binding the amine synergist with monomer also achieves this effect, exemplified by pGLa-BPN, which has a migration rate of 1.0%. Moreover, using ITX as the photoinitiator unit in pGLa-TXN, the migration rate reaches 0.3%.
The modified photoinitiating units proposed in this paper can solve the current migration rate issues in the photocuring industry. By also binding the amine synergist to the backbone, further improvement of the initiator is possible, presenting a promising outlook for industrial applications. 
關鍵字(中) ★ 光起始劑
★ 自固化
★ 低遷移率
關鍵字(英) ★ photoinitiator
★ self-initiating
★ low migration
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vi
表目錄 xii
Figure xiv
Scheme xx
附錄目錄 xxii
第一章 緒論 1
1-1 前言—光起始劑(Photoinitiator) 1
1-2光起始劑反應 4
1-2-1 Norrish Type I Reaction 8
1-2-2 Norrish Type II Reaction 8
1-3Norrish type II的光起始劑單元 11
1-3-1二苯甲酮光起始劑 11
1-3-2噻吨酮光起始劑 12
1-4光起始劑優勢及其潛在安全因素 13
1-5光起始劑合成文獻回顧 14
第二章 研究動機與目的 25
2-1 研究動機 25
2-2 環氧大豆油主幹 26
2-3 高分子主幹 31
第三章 實驗與儀器 33
3-1 實驗藥品 33
3-1-1 實驗所使用之化學藥品 33
3-1-2 實驗所使用之溶劑 35
3-2 實驗儀器及技術原理 35
3-2-1 Brightek UV面光源機 35
3-2-2 核磁共振光譜儀(Nuclear Magnetic Resonance);Bruker AVANCE 300 / 500MHz 35
3-2-3 紫外光 / 可見光吸收光譜(Ultraviolet / visible spectro-photometer) ; U-5700 型 36
3-2-4 雙鍵轉換效率(Alkene Transfer Ratio) 36
3-2-5 遷移率測試(Migration test) 37
3-3 合成步驟 38
3-3-1 ESBO-BP的合成 38
3-3-2 ESBOa-BP的合成 39
3-3-3 ESBO-BPN的合成 40
3-3-4 ESBOa-BPN的合成 41
3-3-5 M1的合成 43
3-3-6 M2的合成 44
3-3-7 M3的合成 45
3-3-8 pGL-BP的合成 46
3-3-9 pGLa-BP的合成 47
3-3-10 pGL-BPN的合成 48
3-3-11 pGLa-BPN的合成 49
3-3-12 TX的合成 50
3-3-13 ESBO-TX的合成 51
3-3-14 ESBOa-TX的合成 52
3-3-15 M4的合成 53
3-3-16 pGL-TX的合成 54
3-3-17 pGLa-TX的合成 55
3-3-18 pGL-TXN的合成 56
3-3-19 pGLa-TXN的合成 57
第四章 結果與討論 59
4-1 BPA系列之合成與討論 59
4-1-1 ESBO-BP 60
4-1-2 ESBOa-BP 61
4-1-3 ESBO-BPN 62
4-1-4 ESBOa-BPN 63
4-1-5 pGL-BP 64
4-1-6 pGLa-BP 65
4-1-7 pGL-BPN 66
4-1-8 pGLa-BPN 67
4-2 TX系列之合成與討論 68
4-2-1 ESBO-TX 68
4-2-2 ESBOa-TX 69
4-2-3 pGL-TX 70
4-2-4 pGLa-TX 71
4-2-5 pGL-TXN 72
4-2-6 pGLa-TXN 72
4-3 UV吸收鑑定 73
4-3-1 ESBO-BP系列之UV吸收 73
4-3-2 pGL-BP系列之UV吸收 75
4-3-3 ESBO-TX系列之UV吸收 76
4-3-4 pGL-TX系列之UV吸收 77
4-4 雙鍵轉換效率鑑定 78
4-4-1 ESBO-BP系列之雙鍵轉換效率 78
4-4-2 pGL-BP系列之雙鍵轉換效率 83
4-4-3 ESBO-TX系列之雙鍵轉換效率 87
4-4-4 pGL-TX系列之雙鍵轉換效率 90
4-5 遷移率鑑定 94
4-5-1 ESBO-BP系列之遷移率 94
4-5-2 pGL-BP系列之遷移率 98
4-5-3 ESBO-TX系列之遷移率 101
4-5-4 pGL-TX系列之遷移率 103
第五章 結論 106
附錄 108
參考文獻 118
參考文獻 1. X. Ren; W. Liu; Q. Yao; S. Wang; W. Liu; H. Gu; D. Wang; J. Fan; X. Peng, Dyes Pigm., 2022, 200, 110133.
2. H. Bahria; Y. Erbil, Dyes Pigm., 2016, 134, 442–447.
3. C. Wang; K. Yan; X. Luo; S. Jin; L. Wang; J. Luo; J. Zheng, Color. Technol., 2021, 137, 348–360.
4. https://www.businessresearchinsights.com/market-reports/thick-layer-photoresists-market-105988
5. https://www.maximizemarketresearch.com/market-report/global-photoinitiators-market/72157/
6. M. A. Lago; A. Rodriguez; R. Sendon; J. Bustos; M.T. Nieto; P. Paseiro, Food Additives& Contaminants Part A, 2015, 32, 779-798.
7. H.F. Gruber, Progress in Polymer Science, 1992, 17, 953-1044.
8. B. G. W. Norrish; C. H. Bamford, Nature, 1936, 138, 1016.
9. A. Allushi; C. Kutahya; C. Aydogan; J. Kreutzer; G. Yilmaz; Y. Yagci, Polym. Chem., 2017, 8, 1972.
10. M. K. Trivedi; A. Branton; D. Trivedi; G. Nayak; G. Saikia; S. Jana, Science Journal of Analytical Chemistry, 2015, 3, 109-114.
11. N. Khemiri; S. Messaoudi; M. Abderrabba; G. Spighi; M. AndréGaveau; M. Briant; B. Soep; J. M. Mestdagh; M. Hochlaf; L. Poisson, The Journal of Physical Chemistry. A, 2015, 119, 5901-6154.
12. Kanerva L.; Elsner P.; Wahlberg J.E.; Maibach H.I., Handbook of occupational dermatology, 2012.
13. Carroll G.T.; Turro N.J.; Koberstein J.T., J Colloid Interface Sci, 2010, 351, 556-560.
14. Zucchi S.; Bluthgen N.; Ieronimo A.; Fent K., Toxicol Appl Pharmacol, 2011, 250, 137-146.
15. A. Anadón; D. Bell; M. L. Binderup; W. Bursch; L. Castle; R. Crebelli; K. H. Engel; R. Franz; N. Gontard; T. Haertlé; T. Husøy; K. D. Jany; C. Leclercq; J. C. Lhuguenot; W. Mennes; M. R. Milana; K. Pfaff; K. Svensson; F. Toldrá; R. Waring; D. Wölfle, The EFSA Journal, 2009, 1104, 1-30.
16. N. F. Nikitas; P. L. Gkizis; C. G. Kokotos, Org. Biomol. Chem., 2021, 19, 5237.
17. R. M. Montoya; R. L. Vargas; O. A. Aguilar, Annals of Global Health, 2018, 84, 225-238.
18. M. Pagac; J. Hajnys; Q.-P. Ma; L. Jancar; J. Jansa; P. Stefek; J. Mesicek, Polymers, 2021, 13, 598.
19. T. Gencoglu; B. Graff; F. Morlet-Savary; J. Lalev´ee; D. Avci, ChemistrySelect, 2021, 6, 5743–5751.
20. A. Mau; T.H. Le; C. Dietlin; T.-T. Bui; B. Graff; F. Dumur; F. Goubard; J. Lalevee, Polym. Chem., 2020, 11, 7221–7234.
21. G. Foli; M. Degli Esposti; D. Morselli; P. Fabbri Macromol, Rapid Commun., 2020, 41, 1900660.
22. Y. Nakagawa; K. Tayama, Arch Toxicol, 2002, 76, 727-731.
23. S. Liu; H. Chen; Y. Zhang; K. Sun; Y. Xu; F. Morlet-Savary; B. Graff; G. Noirbent; C. Pigot; D. Brunel; M. Nechab; D. Gigmes; P. Xiao; F. Dumur; J. Lalevee, Polymers, 2020, 12, 1394.
24. J. Yang; W. Liao; Y. Xiong; Q. Wu; X. Wang; Z. Li; H. Tang, Dyes Pigm., 2018, 148, 16-24.
25. M. Degirmenci; I. Cianga; G. Hizal; Y. Yagci, Polymer Preprints, 2002, 43, 22-23.
26. G. Temel; N. Arsi; Y. Yagci, polymer Bulletin, 2006, 57, 51-56.
27. J. Wei; H. Wang; X. Jiamg; J. Yin, Macromolecules, 2007, 40, 2344-2351.
28. D. K. Baltaa; Ö. Karahanb; D. Avci; N. Arsua, Progress in Organic Coatings, 2014, 78, 200-207.
29. W. Li; J. Nie; Y. Y. Zhao; X. Q. Zhu, Journal of Photochemistry & Photobiology, A: Chemistry, 2024, 455, 115785.
30. L. Guadagno; L. Vertuccio; C. Naddeo; E. Calabrese; G. Barra; M. Raimondo; A. Sorrentino; W. H. Binder; P. Michael; S. Rana, Polymers, 2019, 11, 903.
31. Y. Xia; R. C. Larock, Green Chem, 2010, 12, 1893.
32. S. Z. Erhan; B. K. Sharma; Z. Liu; A. Adhvaryu, J Agric Food Chem, 2008, 56, 8919.
33. B. K. Sharma; Z. Liu; A. Adhvaryu; S. Z. Erhan, J Agric Food Chem, 2008, 56, 3049.
34. A. Luo; X. Jiang; J. Yin, Polymer, 2012, 53, 2183-2189.
35. J. Yang; X. X. Yin; J. Nie, 2019, CN 110294737 A.
36. M. Aydin; N. Arsu; Y. Y. Macromol, Rapid Commun. 2003, 24, 718–723.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2024-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明