參考文獻 |
1. Blanche, P., Dartigues, J. F. and Jacqmin-Gadda, H. (2013). Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Statistics in Medicine, 32(30), 5381–5397.
2. Blanche, P., Kattan, M. W. and Gerds, T. A. (2019). The c-index is not proper for the
evaluation of t-year predicted risks. Biostatistics, 20(2), 347–357.
3. Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical
Society. Series B (Methodological), 34(2), 187–220.
4. Cox, D. R. (1972). Partial likelihood. Biometrics, 62, 269-276.
5. Dietz, K., Gail, M., Krickeberg, K., Samet, J., Tsiatis, A. and Lange, Kenneth. (2002). Statistics for Biology and Health.
6. Gerds, T. A., Kattan, M. W., Schumacher, M. and Yu, C. (2013). Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Statistics in Medicine, 32(13), 2173–2184.
7. Heagerty, P. J. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics, 61(1), 92–105.
8. Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measure-ments and event time data. Biostatistics , 1(4), 465–480.
9. Hickey, G. L., Philipson, P., Jorgensen, A. and Kolamunnage-Dona, R. (2016). Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues. BMC Medical Research Methodology, 16(1), 117.
10. Houwelingen, H. and Putter, H. (2012). Dynamic Prediction in Clinical Survival Analysis.
11. Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics, 62(4), 1037–1043.
12. Kamarudin, A. N., Cox, T. and Kolamunnage-Dona, R. (2017). Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Medical Research Methodology, 17(1), 53.
13. Pantoja-Galicia, N., Okereke, O. I., Blacker, D. and Betensky, R. A. (2021). Concordance Measures and Time-Dependent ROC Methods. Biostatistics and Epidemiology, 5(2),232–249.
14. Rizopoulos, D. (2010) JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software, 35(9), 1–33.
15. Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. Journal of Statistical Software ,72(7), 1–45.
16. Robins, J. M. and Finkelstein, D. M. (2000). Correcting for noncompliance and dependent censoring in an AIDS Clinical Trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics, 56(3), 779–788.
17. Tseng, Y. K., Hsieh, F. and Wang, J. L. (2005). Joint Modelling of Accelerated Failure Time and Longitudinal Data. Biometrika, 92, 587–603.
18. Tseng, Y. K., SU, Y. R., MAO, M. and Wang, J. L. (2015) An extended hazard model with longitudinal covariates. Biometrika, 102, 135–150.
19. Tsiatis, A. A. and Davidian, M.(2001) A Semiparametric Estimator for the Proportional Hazards Model with Longitudinal Covariates Measured with Error. Biometrika, 88,447–458.
20. van Geloven, N. , He, Y. , Zwinderman, A.H. and Putter, H. (2021). Estimation of incident dynamic AUC in practice, Computational Statistics and Data Analysis , vol. 154.
21. Williamson, P. R., Kolamunnage-Dona, R., Philipson, P. and Marson, A. G. (2008). Joint modelling of longitudinal and competing risks data. Statistics in Medicine, 27(30),6426–6438.
22. Wulfsohn, M. S.and Tsiatis, A. A.(1997) A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330-339.
23. Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020) Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM. Journal of Statistical Software,93, 1-29.
24. Zeng, D. and Lin, D. Y. (2007). Efficient Estimation for the Accelerated Failure Time Model. Journal of the American Statistical Association, 102(480), 1387–1396.82. |